578 resultados para reductive paraphrase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesis afronta el análisis del itinerario vital de Fernando Távora, una vida entregada apasionadamente a una causa de refundación estética y conceptual de una arquitectura portuguesa condenada a la mediocridad y al ostracismo en el momento en que empieza a ejercer la profesión. La investigación se adentra en todos los aspectos que convergen en su dedicación al logro de aquella misión, pues la que él mismo probablemente llamaría orteguianamente su circunstancia, resulta inseparable de su pensamiento y de su obra. Se pretende establecer la riqueza y complejidad de la figura de Fernando Távora y su importancia como punto de inflexión en la evolución de la arquitectura portuguesa, que ha llegado a alcanzar el reconocimiento internacional en las últimas décadas, fundamentalmente a partir de la consagración de Álvaro Siza Vieira y la denominada Escuela de Oporto. Desde una posición de absoluta autonomía respecto de lo que acontece dentro y fuera de las fronteras portuguesas, su labor se distinguirá por su singularidad teórica y arquitectónica, no dejando por ello de influir decisivamente en su entorno cercano. Dos manifiestos escritos, el juvenil O problema da Casa Portuguesa y el posterior Da Organização do Espaço son elementos estructurantes de un pensamiento teórico que germina en una obra construida inseparable de aquel, de cuya coherencia dan testimonio los aquí considerados verdaderos manifiestos proyectuales del arquitecto. Efectivamente, se analizarán detalladamente como tales la Casa sobre o Mar –manifiesto inicial-, el Pabellón de Tenis –manifiesto de confirmación- y la Casa dos 24 -manifiesto final-, proyectos que vieron la luz en diferentes etapas de su trayectoria y constituyen la aplicación práctica de sus teorías en una sintaxis magistral. En estos tres proyectos es donde verdaderamente la tesis cobra cuerpo, pues suponen el reflejo de la verdadera aportación del arquitecto al pensamiento arquitectónico europeo, la foto fija de la proclamación de resultados de un proyecto arquitectónico integral en momentos muy significativos de su itinerario vital, cuya complejidad se entiende a través de las fases más descriptivas de este documento. Se mostrará cómo para acometer su proyecto integral de arquitectura, una causa de regeneración de la arquitectura portuguesa a partir de la síntesis entre modernidad y tradición, entre universalidad y localidad, tomaría de sus dos personajes más admirados, Le Corbusier y Pessoa, la fuerza moral y la energía que le permitieron acometer apasionadamente tamaña misión. En una infatigable búsqueda en lo global y lo local, Távora conseguirá prestar gran atención al contexto del lugar de intervención sin renunciar a sus convicciones modernas, introduciendo la historia y el dibujo como herramientas de conocimiento del mismo y posteriormente del proceso creativo. El método proyectivo resultante de este modelo, que transmitirá a través de su ejercicio docente a sucesivas generaciones de arquitectos, se convertirá en elemento estructurante de una tendencia surgida de las aulas portuenses, que la crítica internacional acabará denominando Escuela de Oporto en un sentido más amplio. Por su importancia dentro del itinerario profesional del[os] arquitecto[s] portuense[s], las fases más destacadas de su evolución a partir de los años 50 se analizarán en paralelo a una serie de obras representativas de diferentes momentos de la trayectoria de Fernando Távora. En este itinerario vital, a pesar de la originalidad de su pensamiento y su obra, se atisban ciertos paralelismos con grandes arquitectos del siglo XX, que esta tesis afronta. Se puede distinguir entre influencias pasajeras de algunos maestros modernos en los que Távora buscaba la confirmación a sus propias teorías, similitudes con arquitectos coetáneos cuya obra conoció y a los que se encontró cercano por la convergencia de algunos de sus criterios e incluso sorprendentes coincidencias con arquitectos desconocidos para él, entre las que cabe destacar la de los maestros de la Escuela de Madrid Alejandro de la Sota y Javier Sáenz de Oiza. Por último, en una alegoría con los heterónimos de Fernando Pessoa, se analiza desde una perspectiva personal fruto de la investigación y de las entrevistas mantenidas con todos ellos, la importante labor de Álvaro Siza Vieira, Alexandre Alves Costa y su hijo José Bernardo Távora como agentes coadyuvantes en la consecución del proyecto integral de arquitectura [y vida] de Fernando Távora. Sin lugar a dudas, Álvaro Siza constituye el personaje fundamental e imprescindible para que la arquitectura portuguesa alcanzase la privilegiada consideración que en la actualidad ostenta en la escena internacional. Un arquitecto consagrado que ocupa ya, y ocupará siempre, un lugar privilegiado en la breve lista de maestros míticos e irrepetibles de la arquitectura contemporánea. Con todo, cabe afirmar con la paráfrasis bíblica que da título a la tesis que ‘En el principio era Távora...’ ABSTRACT This thesis addresses the analysis of Fernando Távora’s life journey, a life that was passionately devoted to the cause of aesthetically and conceptually overhauling Portuguese architecture, which was doomed to mediocrity and ostracism at the time when he started practicing professionally. This research delves into all aspects converging in his dedication to achieving that mission, since what he himself would probably call his circumstance – in the manner of José Ortega y Gasset – is inseparable from his thinking and his work. This thesis seeks also to establish the richness and complexity of Fernando Távora’s figure and his importance as a turning point in the evolution of Portuguese architecture, which has gone on to achieve international recognition in recent decades, especially after the consecration of Álvaro Siza Vieira and the so-called School of Oporto. From an absolutely autonomous position with regard to what is happening within and outside Portuguese borders, his work will stand out due to its theoretical and architectural uniqueness – this not being a reason to prevent its decisive influence on his close surroundings. Two written manifestos, his early O problema da Casa Portuguesa and his subsequent Da Organização do Espaço, become structural elements of the theoretical thinking that develops into works which are built in parallel with the former. The coherence of this thinking is reflected on the hereby considered the architect’s true project manifestos. Indeed, we will analyse as such the Casa sobre o Mar (initial manifesto), the Tennis Pavilion (confirmation manifesto) and Casa dos 24 (final manifesto), projects which saw the light at different stages of his career and constitute the practical application of his theories in a masterful syntax. These are the three projects where the thesis takes shape, as they become the reflection of the architect’s true contribution to the European architectural school of thought; the still picture of the results proclamation of a whole architectural project at highly significant moments in his life journey, whose complexity can be understood through this document’s most descriptive phases. This study will show how, in order to carry out his architectural project – regenerate Portuguese architecture by synthesizing modernity and tradition, universality and locality –, Távora would take the moral strength and energy from his two most admired figures, Le Corbusier and Pessoa, allowing him to passionately undertake such a colossal mission. In a tireless search within the global and the local, Távora will manage to pay more attention to the context of the intervention place without compromising his modern convictions, by introducing history and drawing as knowledge tools of the place and eventually of the creative process. The resulting projective method of this model, which he will transmit to successive generations of architects through his teaching, will become a structural element of a trend emerged from the Oporto classrooms which international critique will end up denominating School of Porto in a broader sense. Due to its importance within Porto architect[s]’ professional career, the most prominent phases of its evolution as of the 50s will be analysed in parallel to a series of representative works from different moments in Fernando Távora’s career. Despite the originality of his thinking and his work, certain parallelisms with great architects from the 20th century can be found in Távora’s life journey, which this thesis will address. Amongst temporary influences of some modern masters in whom Távora sought confirmation of his own theories, similarities can be spotted with contemporary architects whose work he knew and to whom he felt close because of the convergence of some of his views. It is also possible to see surprising coincidences with architects he did not know, such as Alejandro de la Sota and Javier Sáenz de Oiza, masters from the School of Madrid. Finally, in an allegory with Fernando Pessoa’s heteronyms, this thesis studies – from a personal perspective based on research and the interviews held with all of them – the important work of Álvaro Siza Vieira, Alexandre Alves Costa and his son Jose Bernardo Távora as auxiliaries in the achievement of Fernando Távora’s complete architectural [and life] project. Without the slightest doubt, Álvaro Siza constitutes the essential figure thanks to whom Portuguese architecture would reach the advantaged position it holds nowadays in the international arena. An acclaimed architect, Siza already holds a privileged spot in the brief list of legendary and unrepeatable masters of contemporary architecture. Nevertheless, with the biblical paraphrase that entitles this thesis it can be claimed that ‘In the beginning was Távora…’

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CP12 is a small nuclear encoded chloroplast protein of higher plants, which was recently shown to interact with NAD(P)H–glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13), one of the key enzymes of the reductive pentosephosphate cycle (Calvin cycle). Screening of a pea cDNA library in the yeast two-hybrid system for proteins that interact with CP12, led to the identification of a second member of the Calvin cycle, phosphoribulokinase (PRK; EC 2.7.1.19), as a further specific binding partner for CP12. The exchange of cysteines for serines in CP12 demonstrate that interaction with PRK occurs at the N-terminal peptide loop of CP12. Size exclusion chromatography and immunoprecipitation assays reveal the existence of a stable 600-kDa PRK/CP12/GAPDH complex in the stroma of higher plant chloroplasts. Its stoichiometry is proposed to be of two N-terminally dimerized CP12 molecules, each carrying one PRK dimer on its N terminus and one A2B2 complex of GAPDH subunits on the C-terminal peptide loop. Incubation of the complex with NADP or NADPH, in contrast to NAD or NADH, causes its dissociation. Assays with the stromal 600-kDa fractions in the presence of the four different nicotinamide-adenine dinucleotides indicate that PRK activity depends on complex dissociation and might be further regulated by the accessible ratio of NADP/NADPH. From these results, we conclude that light regulation of the Calvin cycle in higher plants is not only via reductive activation of different proteins by the well-established ferredoxin/thioredoxin system, but in addition, by reversible dissociation of the PRK/CP12/GAPDH complex, mediated by NADP(H).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfate-assimilating organisms reduce inorganic sulfate for Cys biosynthesis. There are two leading hypotheses for the mechanism of sulfate reduction in higher plants. In one, adenosine 5′-phosphosulfate (APS) (5′-adenylylsulfate) sulfotransferase carries out reductive transfer of sulfate from APS to reduced glutathione. Alternatively, the mechanism may be similar to that in bacteria in which the enzyme, 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase, catalyzes thioredoxin (Trx)-dependent reduction of PAPS. Three classes of cDNA were cloned from Arabidopsis thaliana termed APR1, -2, and -3, that functionally complement a cysH, PAPS reductase mutant strain of Escherichia coli. The coding sequence of the APR clones is homologous with PAPS reductases from microorganisms. In addition, a carboxyl-terminal domain is homologous with members of the Trx superfamily. Further genetic analysis showed that the APR clones can functionally complement a mutant strain of E. coli lacking Trx, and an APS kinase, cysC. mutant. These results suggest that the APR enzyme may be a Trx-independent APS reductase. Cell extracts of E. coli expressing APR showed Trx-independent sulfonucleotide reductase activity with a preference for APS over PAPS as a substrate. APR-mediated APS reduction is dependent on dithiothreitol, has a pH optimum of 8.5, is stimulated by high ionic strength, and is sensitive to inactivation by 5′-adenosinemonophosphate (5′-AMP). 2′-AMP, or 3′-phosphoadenosine-5′-phosphate (PAP), a competitive inhibitor of PAPS reductase, do not affect activity. The APR enzymes may be localized in different cellular compartments as evidenced by the presence of an amino-terminal transit peptide for plastid localization in APR1 and APR3 but not APR2. Southern blot analysis confirmed that the APR clones are members of a small gene family, possibly consisting of three members.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin–Benson–Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus, the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavin-containing monooxygenase from yeast (yFMO) carries out the O2- and NADPH-dependent oxidation of biological thiols, including oxidizing glutathione to glutathione disulfide. FMO provides a large fraction of the oxidizing necessary for proper folding of disulfide bond-containing proteins; deletion of the enzyme reduces proper folding of endogenous carboxypeptidase Y by about 40%. The enzyme is not essential to cell viability because other enzymes can generate a significant fraction of the oxidizing equivalents required by the cell. However, yFMO is vital to the yeast response to reductive stress. FMO1 deletion mutants grow poorly under reductive stress, and carboxypeptidase Y activity is less than 10% of that in a stressed wild type. The FMO1 gene appears to be under control of an unfolded protein response element and is inducible by factors, such as reductive stress, that elicit the unfolded protein response. Reductive stress can increase yFMO activity at least 6-fold. This increased activity allows the cell to process endogenous disulfide bond-containing proteins and also to allow correct folding of disulfide-bonded proteins expressed from multicopy plasmids. The unfolded protein response is mediated by the Hac1p transcription factor that mediates virtually all of the induction of yFMO triggered by exogenous reducing agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel protein superfamily with over 600 members was discovered by iterative profile searches and analyzed with powerful bioinformatics and information visualization methods. Evidence exists that these proteins generate a radical species by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. The superfamily (named here Radical SAM) provides evidence that radical-based catalysis is important in a number of previously well- studied but unresolved biochemical pathways and reflects an ancient conserved mechanistic approach to difficult chemistries. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerization, sulfur insertion, ring formation, anaerobic oxidation and protein radical formation. They function in DNA precursor, vitamin, cofactor, antibiotic and herbicide biosynthesis and in biodegradation pathways. One eukaryotic member is interferon-inducible and is considered a candidate drug target for osteoporosis; another is observed to bind the neuronal Cdk5 activator protein. Five defining members not previously recognized as homologs are lysine 2,3-aminomutase, biotin synthase, lipoic acid synthase and the activating enzymes for pyruvate formate-lyase and anaerobic ribonucleotide reductase. Two functional predictions for unknown proteins are made based on integrating other data types such as motif, domain, operon and biochemical pathway into an organized view of similarity relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the interplay of mitochondria and peroxisomes in photorespiration was simulated in a reconstituted system of isolated mitochondria and peroxisomes from spinach (Spinacia oleracea L.) leaves. The mitochondria oxidizing glycine produced serine, which was reduced in the peroxisomes to glycerate. The required reducing equivalents were provided by the mitochondria via the malate-oxaloacetate (OAA) shuttle, in which OAA was reduced in the mitochondrial matrix by NADH generated during glycine oxidation. The rate of peroxisomal glycerate formation, as compared with peroxisomal protein, resembled the corresponding rate required during leaf photosynthesis under ambient conditions. When the reconstituted system produced glycerate at this rate, the malate-to-OAA ratio was in equilibrium with a ratio of NADH/NAD of 8.8 × 10−3. This low ratio is in the same range as the ratio of NADH/NAD in the cytosol of mesophyll cells of intact illuminated spinach leaves, as we had estimated earlier. This result demonstrates that in the photorespiratory cycle a transfer of redox equivalents from the mitochondria to peroxisomes, as postulated from separate experiments with isolated mitochondria and peroxisomes, can indeed operate under conditions of the very low reductive state of the NADH/NAD system prevailing in the cytosol of mesophyll cells in a leaf during photosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellulose-binding domains (CBDs) bind specifically to cellulose, and form distinct domains of most cellulose degrading enzymes. The CBD-mediated binding of the enzyme has a fundamental role in the hydrolysis of the solid cellulose substrate. In this work we have investigated the reversibility and kinetics of the binding of the CBD from Trichoderma reesei cellobiohydrolase I on microcrystalline cellulose. The CBD was produced in Escherichia coli, purified, and radioactively labeled by reductive alkylation with 3H. Sensitive detection of the labeled CBD allowed more detailed analysis of its behavior than has been possible before, and important novel features were resolved. Binding of the CBD was found to be temperature sensitive, with an increased affinity at lower temperatures. The interaction of the CBD with cellulose was shown to be fully reversible and the CBD could be eluted from cellulose by simple dilution. The rate of exchange measured for the CBD-cellulose interaction compares well with the hydrolysis rate of cellobiohydrolase I, which is consistent with its proposed mode of action as a processive exoglucanase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

D-amino acid oxidase is the prototype of the FAD-dependent oxidases. It catalyses the oxidation of D-amino acids to the corresponding alpha-ketoacids. The reducing equivalents are transferred to molecular oxygen with production of hydrogen peroxide. We have solved the crystal structure of the complex of D-amino acid oxidase with benzoate, a competitive inhibitor of the substrate, by single isomorphous replacement and eightfold averaging. Each monomer is formed by two domains with an overall topology similar to that of p-hydroxybenzoate hydroxylase. The benzoate molecule lays parallel to the flavin ring and is held in position by a salt bridge with Arg-283. Analysis of the active site shows that no side chains are properly positioned to act as the postulated base required for the catalytic carboanion mechanism. On the contrary, the benzoate binding mode suggests a direct transfer of the substrate alpha-hydrogen to the flavin during the enzyme reductive half-reaction.The active site Of D-amino acid oxidase exhibits a striking similarity with that of flavocytochrome b2, a structurally unrelated FMN-dependent flavoenzyme. The active site groups (if these two enzymes are in fact superimposable once the mirror-image of the flavocytochrome b2 active site is generated with respect to the flavin plane. Therefore, the catalytic sites of D-amino acid oxidase and flavocytochrome b2 appear to have converged to a highly similar but enantiomeric architecture in order to catalvze similar reactions (oxidation of alpha-amino acids or alpha-hydroxy acids), although with opposite stereochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a protease, named "thiocalsin," that is activated by calcium but only after reductive activation by thioredoxin, a small protein with a redox-active disulfide group that functions widely in regulation. Thiocalsin appeared to be a 14-kDa serine protease that functions independently of calmodulin. The enzyme, purified from germinating wheat grain, specifically cleaved the major indigenous storage proteins, gliadins and glutenins, after they too had been reduced, preferentially by thioredoxin. The disulfide groups of the enzyme, as well as its protein substrates, were reduced by thioredoxin via NADPH and the associated enzyme, NADP-thioredoxin reductase. The results broaden the roles of thioredoxin and calcium and suggest a joint function in activating thiocalsin, thereby providing amino acids for germination and seedling development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purines, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role in the origin of metabolism or the origin of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.