974 resultados para recombinant protein
Resumo:
Semliki Forest virus (SFV) vectors have been efficiently used for rapid high level expression of several G protein-coupled receptors. Here we describe the use of SFV vectors to express the alpha 1b-adrenergic receptor (AR) alone or in the presence of the G protein alpha q and/or beta 2 and gamma 2 subunits. Infection of baby hamster kidney (BHK) cells with recombinant SFV-alpha 1b-AR particles resulted in high specific binding activity of the alpha 1b-AR (24 pmol receptor/mg protein). Time-course studies indicated that the highest level of receptor expression was obtained 30 hours post-infection. The stimulation of BHK cells, with epinephrine led to a 5-fold increase in inositol phosphate (IP) accumulation, confirming the functional coupling of the receptor to G protein-mediated activation of phospholipase C. The SFV expression system represents a rapid and reproducible system to study the pharmacological properties and interactions of G protein coupled receptors and of G protein subunits.
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.
Resumo:
We have used the cellular slime mold, Dictyostelium discoideum (Dd), to express the Plasmodium falciparum circumsporozoite protein (CS), a potential component of a subunit vaccine against malaria. This was accomplished via an expression vector based on the discoidin I-encoding gene promoter, in which we linked a sequence coding for a Dd leader peptide to the almost complete CS coding region (pEDII-CS). CS production at both the mRNA and protein levels is induced by starving cells in a simple phosphate buffer. Variation in pH or cell density does not seem to influence CS synthesis. CS-producing cells can be grown either on their normal substrate, bacteria, or on a semi-synthetic media, without affecting CS accumulation level. The CS produced in Dd seems similar to the natural parasite protein as judged by its size and epitope recognition by a panel of monoclonal antibodies. We constructed a second expression vector in which the CS is under the control of a Dd ras promoter. CS accumulation can then be induced by external addition of cAMP. Such a tightly regulated promoter may allow expression of proteins potentially toxic to the cell. Thus, Dd could be a useful eukaryotic system to produce recombinant proteins, in particular from human or animal parasites like P. falciparum.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP; MacMARCKS) are protein kinase C substrates in diverse cell types. Activation of murine macrophages by cytokines increases MRP expression, but infection with Leishmania promastigotes during activation results in MRP depletion. We therefore examined the effect of Leishmania major LV39 on recombinant MRP. Both live promastigotes and a soluble fraction of LV39 lysates degraded MRP to yield lower molecular weight fragments. Degradation was independent of MRP myristoylation and was inhibited by protein kinase C-dependent phosphorylation of MRP. MRP was similarly degraded by purified leishmanolysin (gp63), a Leishmania surface metalloprotease. Degradation was evident at low enzyme/substrate ratios, over a broad pH range, and was inhibited by 1,10-phenanthroline and by a hydroxamate dipeptide inhibitor of leishmanolysin. Using mass spectrometric analysis, cleavage was shown to occur within the effector domain of MRP between Ser(92) and Phe(93), in accordance with the substrate specificity of leishmanolysin. Moreover, an MRP construct in which the effector domain had been deleted was resistant to cleavage. Thus, Leishmania infection may result in leishmanolysin-dependent hydrolysis of MRP, a major protein kinase C substrate in macrophages.
Resumo:
The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVβ3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process. Copyright © 2014 John Wiley & Sons, Ltd.
Human IgG responses against the N-terminal region of Merozoite Surface Protein 1 of Plasmodium vivax
Resumo:
The complete primary structure of the gene encoding the Merozoite Surface Protein 1 of Plasmodium vivax (PvMSP-1) revealed the existence of interspecies conserved regions among the analogous proteins of other Plasmodia species. Here, three DNA recombinant clones expressing 50, 200 and 500 amino acids from the N-terminal region of the PvMSP-1 protein were used on ELISA and protein immunoblotting assays to look at the IgG antibody responses of malaria patients from the Brasilian amazon region of Rondônia. The results showed the existance of P. vivax and P. falciparum IgG antibodies directed against PvMSP-1 antigenic determinants expressed in the clones containing the first 200 and the following 500 amino acids of the molecule, but not within the one expressing the most N-terminal 50 amino acids. Interestingly, there was no correlation between the levels of these IgG antibodies and the previous number of malaria infections.
Resumo:
BACKGROUND: Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. RESULTS: Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependent manner. More than 90% of transduced cells were small and medium sized neurons (< 700 microm 2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (approximately 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell types. CONCLUSION: We have found that rAAV2/6 is an efficient vector to deliver transgenes to nociceptive neurons in mice. Furthermore, the characterization of the transduction profile may facilitate gene transfer studies to dissect mechanisms behind neuropathic pain.
Resumo:
We characterized the Plasmodium falciparum antigen 332 (Ag332) which is specifically expressed during the asexual intraerythrocytic cycle of the parasite. The corresponding Pf332 gene has been located in the subtelomeric region of chromosome 11. Furthermore, it is present in all strais so far analyzed and shows marked restriction length fragment polymorphism. Partial sequence and restriction endonuclease digestion of cloned fragments revealed that the Pf332 gene is composed of highly degenerated repeats rich is glutamic acid. Mung been nuclease digestion and Northern blot analysis suggested that Pf332 gene codes for a protein of about 700 kDa. These data were further confirmed by Western blot and immunoprecipitation of parasites extracts with an antiserum raised against a recombinant clone expressing part of the Ag332. Confocal immunofluorescence showed that Ag332 is translocated from the parasite to the surface of infected red blood cells within vesicle-like structures. In addition, Ag332 was detected on the surface of monkey erythrocytes infected with Plasmodium falciparum.
Resumo:
The design of malarial vaccine based on the circumsporozoite (CS) protein, a majuor surface antigen of the sporozoite stage of the malaria parasite, requires the identification of T and B cell epitopes for inclusion in recombinant or synthetic vaccine candidates. We have investigated the specificity and function of a series of T cell clones, derived from volunteers immunized with Plasmodium falciparum sporozoites in an effort to identify relevant epitopes in the immune response to the pre-erythrocytic stages of the parasite. CD4+ T cell clones were obtained wich specifically recognized a repetitive epitope located in the 5'repeat region of the CS protein. This epitope, when conjugated to the 3'repeat region in a synthetic MAPs construct, induced high titers of antisporozoite antibodies in C57B1 mice. A second T cell epitope, which mapped to aa 326-345 of the carboxy terminal, was recognized by lytic, as well as non-lytic, CD4+ T cells derived from the sporozoite-immunized volunteers. The demonstration of CD4+ CTL in the volunteers, and the recent studies inthe rodent model (Renia et al., 1991; Tsuji et al., 1990), suggested that CS-specific CD4+ T cells, in addition to their indirect role as helper cells in the induction of antibody and CD8 + effector cells, may also play a direct role in protection against sporozoite challenge by targeting EEF within the liver.
Resumo:
The genus Aotus spp. (owl monkey) is one of the WHO recommended experimental models for Plasmodium falciparum blood stage infection, especially relevant for vaccination studies with asexual blood stage antigens of this parasite. For several immunization trials with purified recombinant merozoite/schizont antigens, the susceptible Aouts kenotypes II, III, IV and VI were immunized with Escherichia coli derived fusion proteins containg partial sequences of the proteins MSAI (merozoite surface antigen I), SERP (serine-strech protein) and HRPII (histidine alanine rich protein II) as well as with a group of recombinant antigens obtained by an antiserum raised against a protective 41 kD protein band. The subcutaneous application (3x) of the antigen preparations was carried out in intact animals followed by splenectomy prior to challange, in order to increase the susceptibility of the experimental hosts to the parasite. A partial sequence of HRPII, the combination of three different fusion proteins of the 41 kD group and mixture of two sequences of SERP in the presence of the modified Al(OH)3 adjuvant conferred significant protection against a challange infection with P. falciparum blood stages (2-5 x 10 (elevado a sexta potência) i. RBC). Monkey immunized with the MS2-fusion protein carrying the N-terminal part of the 195 kD precursor of the major merozoite surface antigens induced only marginal protection showing some correlation between antibody titer and degree of parasitaemia. Based on the protective capacity of these recombinant antigens we have expressed two hybrid proteins (MS2/SERP/HRPII and SERP/MSAI/HRPII) in E. coli containing selected partial sequences of SERP, HRPII and MSAI. Antibodies raised against both hybrid proteins in rabbits and Aotus monkeys recognize the corresponding schizont polypeptides. In two independent immunization trials using 13 animals (age 7 months to 3 years) we could show that immunization of Aotus monkeys with either of the two hybrid proteins administered in an oil-based well tolerated formulation protected the animals frm a severe experimental P. falciparum (strain Palo Alto) infection.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Molecular cloning of components of protective antigenic preparations have suggested that related parasite fatty acid binding proteins could form the basis of the well documented protective, immune cross reactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. We have now confirmed the cross protective potential of parasite fatty acid binding proteins and suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni of veterinary and human importance respectively.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.