926 resultados para reactive oxygen metabolites
Resumo:
Oxidative stress is the result of an imbalance between oxidant and antioxidant species, with predominance of oxidative species with harmful action of reactive oxygen species (ROS) and reactive nitrogen species (RNS) on cells. Changes in the levels of nitric oxide (NO) can be the cause and/ or a result of various pathophysiological processes. The main objective of this review is to address the relationship between oxidative stress and atherosclerosis in order to better understand the main features of this disease.
Resumo:
Docosahexaenoic acid (C22:6, n-3, DHA) is a polyunsaturated fatty acid (PUFA) present in large concentrations in the brain and, due to the presence of six double bonds in its structure, is highly susceptible to oxidation by enzymes and reactive oxygen/nitrogen species. The peroxidation of PUFAs has been implicated in an increasing number of human disorders, including neurodegenerative diseases. Hence, a better understanding of the metabolism pathways of DHA should provide new insights about its role in neurodegenerative diseases. Here we review the main aspects related to DHA metabolism, as well as, the recent findings showing its association with neurodegenerative diseases.
Resumo:
Chromium toxicity affects redox reactions within plant cells, generating detrimental reactive oxygen species. Glutathione is an antioxidant peptide and also a substrate for the production of phytochelatins, which are chelating peptides reported to mitigate Cr3+ toxicity in plants. In this study, Brachiaria brizantha (B. brizantha) and Brachiaria ruziziensis (B. ruziziensis) seedlings were evaluated for physiological responses and glutathione production following the addition of zero or 5 mg L-1 Cr3+ to the nutrient solution. Glutathione levels were determined by colorimetric analysis at 412 nm using 5,5'-dithio-bis(2-nitrobenzoic acid) as a chromophore reagent and recovery with glutathione reductase (with evaluations at days 10 and 20 of continuous growth). The assessments were carried out in a completely randomized design with 2 authentic replications, and arranged in a 23 factorial. Cr3+ caused an average increase of 0.76 mg g-1 in the initial glutathione content. However, by day 20 there was an average reduction of 3.63 mg g-1. Chromium-affected physiological detrimental responses, albeit detected in both species, were less-pronounced in B. ruziziensis, along with a much higher level of glutathione. This study indicates that B. ruziziensis has a greater tolerance for chromium toxicity than B. brizantha, and that glutathione is likely to be involved in the mitigation of chromium stress in B. ruziziensis.
Resumo:
The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.
Resumo:
Photosynthetic reactions are divided in two parts: light-driven electron transfer reactions and carbon fixation reactions. Electron transfer reactions capture solar energy and split water molecules to form reducing energy (NADPH) and energy-carrying molecules (ATP). These end-products are used for fixation of inorganic carbon dioxide into organic sugar molecules. Ferredoxin-NADP+ oxidoreductase (FNR) is an enzyme that acts at the branch point between the electron transfer reactions and reductive metabolism by catalyzing reduction of NADP+ at the last step of the electron transfer chain. In this thesis, two isoforms of FNR from A rabidopsis thaliana, FNR1 and FNR2, were characterized using the reverse genetics approach. The fnr1 and fnr2 mutant plants resembled each other in many respects. Downregulation of photosynthesis protected the single fnr mutant plants from excess formation of reactive oxygen species (ROS), even without significant upregulation of antioxidative mechanisms. Adverse growth conditions, however, resulted in phenotypic differences between fnr1 and fnr2. While fnr2 plants showed downregulation of photosynthetic complexes and upregulation of antioxidative mechanisms under low-temperature growth conditions, fnr1 plants had the wild-type phenotype, indicating that FNR2 may have a specific role in redistribution of electrons under unfavorable conditions. The heterozygotic double mutant (fnr1xfnr2) was severely devoid of chloroplastic FNR, which clearly restricted photosynthesis. The fnr1xfnr2 plants used several photoprotective mechanisms to avoid oxidative stress. In wild-type chloroplasts, both FNR isoforms were found from the stroma, the thylakoid membrane, and the inner envelope membrane. In the absence of the FNR1 isoform, FNR2 was found only in the stroma, suggesting that FNR1 and FNR2 form a dimer, by which FNR1 anchors FNR2 to the thylakoid membrane. Structural modeling predicted formation of an FNR dimer in complex with ferredoxin. In this thesis work, Tic62 was found to be the main protein that binds FNR to the thylakoid membrane, where Tic62 and FNR formed high molecular weight complexes. The formation of such complexes was shown to be regulated by the redox state of the chloroplast. The accumulation of Tic62-FNR complexes in darkness and dissociation of complexes from the membranes in light provide evidence that the complexes may have roles unrelated to photosynthesis. This and the high viability of fnr1 mutant plants lacking thylakoid-bound FNR indicate that the stromal pool of FNR is photosynthetically active.
Resumo:
Eucalypt plantation has high economical importance in Brazil; however, it has been attacked by various pathogens under different environmental stress conditions. Disease resistance and survival under unfavorable environmental conditions have revealed that the eucalypt has developed highly efficient defense systems. Here we show the results of the Eucalyptus ESTs Genome Project (FORESTs). Using the expressed sequence tags (ESTs) obtained by the Project, contigs of similar sequences from each cDNA library induced and not induced by stress agents were formed, and cDNA sequences similar to other already known molecules, such as plant-signaling molecules, phytoalexins, lignin biosynthesis pathways, PR-proteins and putative genes corresponding to enzymes involved in the detoxification of reactive oxygen species, were identified. We also present general considerations about the mechanisms of Eucalyptus defense against biotic and abiotic stresses. These data are of extreme importance for future eucalypt breeding programs aimed at developing plants with enhanced resistance against pathogens and environmental stresses.
Resumo:
Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.
DPS-Like Peroxide Resistance Protein: Structural and Functional Studies on a Versatile Nanocontainer
Resumo:
Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H
Resumo:
This dissertation studies the signaling events mediated by the extracellular superoxide dismutase (SOD3). SOD3 is an antioxidant enzyme which converts the harmful superoxide into hydrogen peroxide. Overproduction of these reactive oxygen species (ROS) in the cellular environment as a result of tissue injury or impaired antioxidant defense system has detrimental effects on tissue integrity and function. However, especially hydrogen peroxide is also an important signaling agent. Ischemic injury in muscle causes acute oxidative stress and inflammation. We investigated the ability of SOD3 to attenuate ischemia induced inflammation and to promote recovery of skeletal muscle tissue. We found that SOD3 can downregulate the expression of several inflammatory cytokines and cell adhesion molecules thus preventing the accumulation of oxidant-producing inflammatory cells. Secondly, SOD3 was able to promote long-term activation of the mitogenic Erk pathway, but increased only briefly the activity of pro-survival Akt pathway at an early stage of ischemic inflammation, thus reducing apoptosis. SOD3 is a prominent antioxidant in the thyroid gland where oxidative stress is constantly present. We investigated the role of SOD3 in normal thyroid follicular cells and the changes in its expression in various hyperproliferative disorders. We first showed that SOD3 is TSH-responsive which indicated its participation in thyroid function. Its principal function seems to be in follicular cell proliferation since knockdown cells were deficient in proliferation. Additionally, it was overexpressed in goiter tissue. However, SOD3 was consistently downregulated in thyroid cancer cell lines and tissues. In conclusion, SOD3 is involved in tissue maintenance, cell proliferation and inflammatory cell migration. Its mechanisms of action are the activation of known proliferation/survival pathways, inhibition of apoptosis and regulation of adhesion molecule expression.
Resumo:
Cyanobacteria are a diverse group of oxygenic photosynthetic bacteria that inhabit in a wide range of environments. They are versatile and multifaceted organisms with great possibilities for different biotechnological applications. For example, cyanobacteria produce molecular hydrogen (H2), which is one of the most important alternatives for clean and sustainable energy. Apart from being beneficial, cyanobacteria also possess harmful characteristics and may become a source of threat to human health and other living organisms, as they are able to form surface blooms that are producing a variety of toxic or bioactive compounds. The University of Helsinki Culture Collection (UHCC) maintains around 1,000 cyanobacterial strains representing a large number of genera and species isolated from the Baltic Sea and Finnish lakes. The culture collection covers different life forms such as unicellular and filamentous, N2-fixing and non-N2-fixing strains, and planktonic and benthic cyanobacteria. In this thesis, the UHCC has been screened to identify potential strains for sustainable biohydrogen production and also for strains that produce compounds modifying the bioenergetic pathways of other cyanobacteria or terrestrial plants. Among the 400 cyanobacterial strains screened so far, ten were identified as high H2-producing strains. The enzyme systems involved in H2 metabolism of cyanobacteria were analyzed using the Southern hybridization approach. This revealed the presence of the enzyme nitrogenase in all strains tested, while none of them are likely to have contained alternative nitrogenases. All the strains tested, except for two Calothrix strains, XSPORK 36C and XSPORK 11A, were suggested to contain both uptake and bidirectional hydrogenases. Moreover, 55 methanol extracts of various cyanobacterial strains were screened to identify potent bioactive compounds affecting the photosynthetic apparatus of the model cyanobacterium, Synechocystis PCC 6803. The extract from Nostoc XPORK 14A was the only one that modified the photosynthetic machinery and dark respiration. The compound responsible for this effect was identified, purified, and named M22. M22 demonstrated a dual-action mechanism: production of reactive oxygen species (ROS) under illumination and an unknown mechanism that also prevailed in the dark. During summer, the Baltic Sea is occupied by toxic blooms of Nodularia spumigena (hereafter referred to as N. spumigena), which produces a hepatotoxin called nodularin. Long-term exposure of the terrestrial plant spinach to nodularin was studied. Such treatment resulted in inhibition of growth and chlorosis of the leaves. Moreover, the activity and amount of mitochondrial electron transfer complexes increased in the leaves exposed to nodularin-containing extract, indicating upregulation of respiratory reactions, whereas no marked changes were detected in the structure or function of the photosynthetic machinery. Nodularin-exposed plants suffered from oxidative stress, evidenced by oxidative modifications of various proteins. Plants initiated strategies to combat the stress by increasing the levels of alpha-tocopherol, mitochondrial alternative oxidase (AOX), and mitochondrial ascorbate peroxidase (mAPX).
Resumo:
The weaning period of piglets is characterized by physiological alterations, such as decreased weight gain, increased reactive oxygen species (ROS) and increased serum cortisol levels with possible effects on the immune response. The effect of parenteral administration of vitamins A, D and E on production performance, oxidative metabolism, and the function of polymorphonuclear leukocytes (PMNLs) was assessed in piglets during the weaning period. The sample was comprised of 20 male piglets that were given an injectable ADE vitamin combination (135,000 IU vitamin A, 40,000 IU vitamin D and 40mg vitamin E/ animal) at 20 and 40 days of age. Weight gain, concentration of reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and the microbicidal and phagocytic activity of PMNLs were assessed. No difference was observed in the average piglet weight during the study; however, a greater percentage of weight gain was observed after weaning in the treated group. The concentrations of GSH and SOD did not differ between groups, although lipid peroxidation was greater in the control group at 60 days of age. The investigated variables of oxidative metabolism were correlated as follows: -0.41 for GSH and MDA, -0.54 for GSH and SOD and 0.34 for MDA and SOD. The intensity of intracellular ROS production, the percentage of ROS-producing PMNLs and the intensity of phagocytosis by PMNLs did not differ between treatment groups. Administration of the injectable ADE combination improved the percentage of weight gain between 20 and 40 days of age, decreased oxidative stress at 60 days of age and did not influence the function of PMNLs in piglets.
Resumo:
Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS) and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG) and a control group (CG). The TG animals received the ADE vitamin complex (1mL/50 kg of body weight) by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK), lactate dehydrogenase (LDH), lactate, glucose, aspartate aminotransferase (AST), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.
Resumo:
Lactofen is a diphenylether herbicide recommended to control broad-leaved weeds in soybean (Glycine max) fields and its mechanism of action is the inhibition of protoporphyrinogen-IX oxidase (Protox), which acts in the chlorophyll biosynthesis. This inhibition results in an accumulation of protoporphyrin-IX, which leads to the production of reactive oxygen species (ROS) that cause oxidative stress. Consequently, spots, wrinkling and leaf burn may occur, resulting in a transitory crop growth interruption. However, nitric oxide (NO) acts as an antioxidant in direct ROS scavenging. Thus, the aim of this work was to verify, through phytometric and biochemical evaluations, the protective effect of NO in soybean plants treated with the herbicide lactofen. Soybean plants were pre-treated with different levels of sodium nitroprusside (SNP), a NO-donor substance, and then sprayed with 168 g a.i. ha-1 lactofen. Pre-treatment with SNP was beneficial because NO decreased the injury symptoms caused by lactofen in young leaflets and kept low the soluble sugar levels. Nevertheless, NO caused slower plant growth, which indicates that further studies are needed in order to elucidate the action mechanisms of NO in signaling the stress caused by lactofen in soybean crop.
Resumo:
The volatile oils extracted from the roots of Polygala extraaxillaris were analyzed to assess whether they increase oxidative stress in Brachiaria decumbens var. Piatã, as well as to assess their effect on cellular division and cytotoxicity in laboratory. Six concentrations were used (0%, 0.35%, 0.65%, 1.25%, 0.65%, and 5.0%) with four repetitions of 25 seeds. The substance 1-(2-hydroxyphenyl) - ethanone was identified as the major constituent of the volatile oils. The results showed that the highest concentrations of the oils resulted in an increase in the oxidative stress in B. decumbens, as well as alteration in germination and growth, with a consequent reduction in the process of cellular division, causing changes in the growth standard and antioxidant defense.
Resumo:
Sunlight is part of our everyday life and most people accept it as beneficial to our health. With the advance of our knowledge in cutaneous photochemistry, photobiology and photomedicine over the past four decades, the terrestrial solar radiation has become a concern of dermatologists and is considered to be a major damaging environmental factor for our skin. Most photobiological effects (e.g., sunburn, suntanning, local and systemic immunosuppression, photoaging or dermatoheliosis, skin cancer and precancer, etc.) are attributed to ultraviolet radiation (UVR) and more particularly to UVB radiation (290-320 nm). UVA radiation (320-400 nm) also plays an important role in the induction of erythema by the photosensitized generation of reactive oxygen species (singlet oxygen (1O2), superoxide (O2.-) and hydroxyl radicals (.OH)) that damage DNA and cellular membranes, and promote carcinogenesis and the changes associated with photoaging. Therefore, research efforts have been directed at a better photochemical and photobiological understanding of the so-called sunburn reaction, actinic or solar erythema. To survive the insults of actinic damage, the skin appears to have different intrinsic defensive mechanisms, among which antioxidants (enzymatic and non-enzymatic systems) play a pivotal role. In this paper, we will review the basic aspects of the action of UVR on the skin: a) photochemical reactions resulting from photon absorption by endogenous chromophores; b) the lipid peroxidation phenomenon, and c) intrinsic defensive cutaneous mechanisms (antioxidant systems). The last section will cover the inflammatory response including mediator release after cutaneous UVR exposure and adhesion molecule expression