993 resultados para quantum well electrodes
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
Resumo:
Quantum adiabatic pumping of charge and spin between two reservoirs (leads) has recently been demonstrated in nanoscale electronic devices. Pumping occurs when system parameters are varied in a cyclic manner and sufficiently slowly that the quantum system always remains in its ground state. We show that quantum pumping has a natural geometric representation in terms of gauge fields (both Abelian and non-Abelian) defined on the space of system parameters. Tunneling from a scanning tunneling microscope tip through a magnetic atom could be used to demonstrate the non-Abelian character of the gauge field.
Resumo:
A reversible linear master equation model is presented for pressure- and temperature-dependent bimolecular reactions proceeding via multiple long-lived intermediates. This kinetic treatment, which applies when the reactions are measured under pseudo-first-order conditions, facilitates accurate and efficient simulation of the time dependence of the populations of reactants, intermediate species and products. Detailed exploratory calculations have been carried out to demonstrate the capabilities of the approach, with applications to the bimolecular association reaction C3H6 + H reversible arrow C3H7 and the bimolecular chemical activation reaction C2H2 +(CH2)-C-1--> C3H3+H. The efficiency of the method can be dramatically enhanced through use of a diffusion approximation to the master equation, and a methodology for exploiting the sparse structure of the resulting rate matrix is established.
Resumo:
Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions, We illustrate how this general formalism applier; to construct multiparametric versions of the supersymmetric t-J and Li models.
Resumo:
The quantum trajectories method is illustrated for the resonance fluorescence of a two-level atom driven by a multichromatic field. We discuss the method for the time evolution of the fluorescence intensity in the presence of bichromatic and trichromatic driving fields. We consider the special case wherein one multichromatic field component is strong and resonant with the atomic transition whereas the other components are much weaker and arbitrarily detuned from the atomic resonance. We find that the phase-dependent modulations of the Rabi oscillations, recently observed experimentally [Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 49, R1519 (1994)] for the special case when the weaker component of a bichromatic driving field is detuned from the atomic resonance by the strong-field Rabi frequency, appear also for detunings close to the subharmonics of the Rabi frequency. Furthermore, we show that for the atom initially prepared in one of the dressed states of the strong field component the modulations are not sensitive to the phase. We extend the calculations to the case of a trichromatic driving field and find that apart from the modulations of the amplitude there is a modulation of the frequency of the Rabi oscillations. Moreover, the time evolution of the fluorescence intensity depends on the phase regardless of the initial conditions and a phase-dependent suppression of the Rabi oscillations can be observed when the sideband fields are tuned to the subharmonics of the strong-field Rabi frequency. [S1050-2947(98)03501-X].
Resumo:
The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.
Resumo:
We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
We clarify the extra signs appearing in the graded quantum Yang-Baxter reflection equations, when they are written in a matrix form. We find the boundary K-matrix for the Perk-Schultz six-vertex model, thus give a general solution to the graded reflection equation associated with it.
Resumo:
We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity field. We also discuss the possibility of applying these methods for decoherence control in quantum information processing.