986 resultados para pressures
Resumo:
PURPOSE. Longevity has been attributed to decreased cardiovascular mortality. Subjects with long-lived parents may represent a valuable group to study cardiovascular risk factors (CVRF) associated with longevity, possibly leading to new ways of preventing cardiovascular disease. Purpose: Longevity has been attributed to decreased cardiovascular mortality. Subjects with long-lived parents may represent a valuable group to study cardiovascular risk factors (CVRF) associated with longevity, possibly leading to new ways of preventing cardiovascular disease. Methods: We analyzed data from a population-based sample of 2561 participants (1163 men and 1398 women) aged 55--75 years from the city of Lausanne, Switzerland (CoLaus study). Participants were stratified by the number of parents (0, 1, 2) who survived to 85 years or more. Trend across these strata was assessed using a non-parametric kmean test. The associations of parental age (independent covariate used as a proxy for longevity) with fasting blood glucose, blood pressures, blood lipids, body mass index (BMI), weight, height or liver enzymes (continuous dependent variables) were analyzed using multiple linear regressions. Models were adjusted for age, sex, alcohol consumption, smoking and educational level, and BMI for liver enzymes. Results: For subjects with 0 (N=1298), 1 (N=991) and 2 (N=272) long-lived parents, median BMI (interquartile range) was 25.4 (6.5), 24.9 (6.1) and 23.7 (4.8) kg/m2 in women (P<0.001), and 27.3 (4.8), 27.0 (4.5) and 25.9 (4.9) kg/m2 in men (P=0.04), respectively; median weight was 66.5 (16.1), 65.0 (16.4) and 63.4 (13.7) kg in women (P=0.003), and 81.5 (17.0), 81.4 (16.4) and 80.3 (17.1) kg in men (P=0.36). Median height was 161 (8), 162 (9) and 163 (8) cm in women (P=0.005), and 173 (9), 174 (9) and 174 (11) cm in men (P=0.09). The corresponding medians for AST (Aspartate Aminotransferase) were 31 (13), 29 (11) and 28 (10) U/L (P=0.002), and 28 (17), 27 (14) and 26 (19) U/L for ALT (Alanin Aminotransferase, P=0.053) in men. In multivariable analyses, greater parental longevity was associated with lower BMI, lower weight and taller stature in women (P<0.01) and lower AST in men (P=0.011). No significant associations were observed for the other variables analyzed. Sensitivity analyses restricted to subjects whose parents were dead (N=1844) led to similar results, with even stronger associations of parental longevity with liver enzymes in men. Conclusion: In women, increased parental longevity was associated with smaller BMI, attributable to lower weight and taller stature. In men, the association of increased parental longevity with lower liver enzymes, independently of BMI, suggests that parental longevity may be associated with decreased nonalcoholic fatty liver disease.
Resumo:
Summary : During the evolutionary diversification of organisms, similar ecological constraints led to the recurrent appearances of the same traits (phenotypes) in distant lineages, a phenomenon called convergence. In most cases, the genetic origins of the convergent traits remain unknown, but recent studies traced the convergent phenotypes to recurrent alterations of the same gene or, in a few cases, to identical genetic changes. However, these cases remain anecdotal and there is a need for a study system that evolved several times independently and whose genetic determinism is well resolved and straightforward, such as C4 photosynthesis. This adaptation to warm environments, possibly driven by past atmospheric CO2 decreases, consists in a CO2-concentrating pump, created by numerous morphological and biochemical novelties. All genes encoding C4 enzymes already existed in C3 ancestors, and are supposed to have been recruited through gene duplication followed by neo-functionalization, to acquire the cell specific expression pattern and altered kinetic properties that characterize Ca-specific enzymes. These predictions have so far been tested only in species-poor and ecologically marginal C4 dicots. The monocots, and especially the grass family (Poaceae), the most important C4 family in terms of species number, ecological dominance and economical importance, have been largely under-considered as suitable study systems. This thesis aimed at understanding the evolution of the C4 trait in grasses at a molecular level and to use the genetics of C4 photosynthesis to infer the evolutionary history of the C4 phenotype and its driving selective pressures. A molecular phylogeny of grasses and affiliated monocots identified 17 to 18 independent acquisitions of the C4 pathway in the grass family. A relaxed molecular clock was used to date these events and the first C4 evolution was estimated in the Chloridoideae subfamily, between 32-25 million years ago, at a period when atmospheric CO2 abruptly declined. Likelihood models showed that after the COZ decline the probability of evolving the C4 pathway strongly increased, confirming low CO2 as a likely driver of C4 photosynthesis evolution. In order to depict the genetic changes linked to the numerous C4 origins, genes encoding phopshoenolpyruvate carboxylase (PEPC), the key-enzyme responsible for the initial fixation of atmospheric CO2 in the C4 pathway, were isolated from a large sample of C3 and C4 grasses. Phylogenetic analyses were used to reconstruct the evolutionary history of the PEPC multigene family and showed that the evolution of C4-specific PEPC had been driven by positive selection on 21 codons simultaneously in up to eight C4 lineages. These selective pressures led to numerous convergent genetic changes in many different C4 clades, highlighting the repeatability of some evolutionary processes, even at the molecular level. PEPC C4-adaptive changes were traced and used to show multiple appearances of the C, pathway in clades where species tree inferences were unable to differentiate multiple C4 appearances and a single appearance followed by C4 to C3 reversion. Further investigations of genes involved in some of the C4 subtypes only (genes encoding decarboxylating enzymes NADP-malic enzyme and phosphoenolpyruvate carboxykinase) showed that these C4-enzymes also evolved through strong positive selection and underwent parallel genetic changes during the different Ca origins. The adaptive changes on these subtype-specific C4 genes were used to retrace the history of the C4-subtypes phenotypes, which revealed that the evolution of C4-PEPC and C4-decarboxylating enzymes was in several cases disconnected, emphasizing the multiplicity of the C4 trait and the gradual acquisition of the features that create the CO2-pump. Finally, phylogenetic analyses of a gene encoding the Rubisco (the enzyme responsible for the fixation of CO2 into organic compounds in all photosynthetic organisms) showed that C4 evolution switched the selective pressures on this gene. Five codons were recurrently mutated to adapt the enzyme kinetics to the high CO2 concentrations of C4 photosynthetic cells. This knowledge could be used to introgress C4-like Rubisco in C3 crops, which could lead to an increased yield under predicted future high CO2 atmosphere. Globally, the phylogenetic framework adopted during this thesis demonstrated the widespread occurrence of genetic convergence on C4-related enzymes. The genetic traces of C4 photosynthesis evolution allowed reconstructing events that happened during the last 30 million years and proved the usefulness of studying genes directly responsible for phenotype variations when inferring evolutionary history of a given trait. Résumé Durant la diversification évolutive des organismes, des pressions écologiques similaires ont amené à l'apparition récurrente de certains traits (phénotypes) dans des lignées distantes, un phénomène appelé évolution convergente. Dans la plupart des cas, l'origine génétique des traits convergents reste inconnue mais des études récentes ont montré qu'ils étaient dus dans certains cas à des changements répétés du même gène ou, dans de rares cas, à des changements génétiques identiques. Malgré tout, ces cas restent anecdotiques et il y a un réel besoin d'un système d'étude qui ait évolué indépendamment de nombreuses fois et dont le déterminisme génétique soit clairement identifié. La photosynthèse dite en Ça répond à ces critères. Cette adaptation aux environnements chauds, dont l'évolution a pu être encouragé par des baisses passées de la concentration atmosphérique en CO2, est constituée de nombreuses nouveautés morphologiques et biochimiques qui créent une pompe à CO2. La totalité des gènes codant les enzymes Ç4 étaient déjà présents dans les ancêtres C3. Leur recrutement pour la photosynthèse Ç4 est supposé s'être fait par le biais de duplications géniques suivies par une néo-fonctionnalisation pour leur conférer l'expression cellule-spécifique et les propriétés cinétiques qui caractérisent les enzymes C4. Ces prédictions n'ont jusqu'à présent été testées que dans des familles C4 contenant peu d'espèces et ayant un rôle écologique marginal. Les graminées (Poaceae), qui sont la famille C4 la plus importante, tant en termes de nombre d'espèces que de dominance écologique et d'importance économique, ont toujours été considérés comme un système d'étude peu adapté et ont fait le sujet de peu d'investigations évolutives. Le but de cette thèse était de comprendre l'évolution de la photosynthèse en C4 chez les graminées au niveau génétique et d'utiliser les gènes pour inférer l'évolution du phénotype C4 ainsi que les pressions de sélection responsables de son évolution. Une phylogénie moléculaire de la famille des graminées et des monocotylédones apparentés a identifié 17 à 18 acquisitions indépendantes de la photosynthèse chez les graminées. Grâce à une méthode d'horloge moléculaire relâchée, ces évènements ont été datés et la première apparition C4 a été estimée dans la sous-famille des Chloridoideae, il y a 32 à 25 millions d'années, à une période où les concentrations atmosphériques de CO2 ont décliné abruptement. Des modèles de maximum de vraisemblance ont montré qu'à la suite du déclin de CO2, la probabilité d'évoluer la photosynthèse C4 a fortement augmenté, confirmant ainsi qu'une faible concentration de CO2 est une cause potentielle de l'évolution de la photosynthèse C4. Afin d'identifier les mécanismes génétiques responsables des évolutions répétées de la photosynthèse C4, un segment des gènes codant pour la phosphoénolpyruvate carboxylase (PEPC), l'enzyme responsable de la fixation initiale du CO2 atmosphérique chez les plantes C4, ont été séquencés dans une centaine de graminées C3 et C4. Des analyses phylogénétiques ont permis de reconstituer l'histoire évolutive de la famille multigénique des PEPC et ont montré que l'évolution de PEPC spécifiques à la photosynthèse Ça a été causée par de la sélection positive agissant sur 21 codons, et ce simultanément dans huit lignées C4 différentes. Cette sélection positive a conduit à un grand nombre de changements génétiques convergents dans de nombreux clades différents, ce qui illustre la répétabilité de certains phénomènes évolutifs, et ce même au niveau génétique. Les changements sur la PEPC liés au C4 ont été utilisés pour confirmer des évolutions indépendantes du phénotype C4 dans des clades où l'arbre des espèces était incapable de différencier des apparitions indépendantes d'une seule apparition suivie par une réversion de C4 en C3. En considérant des gènes codant des protéines impliquées uniquement dans certains sous-types C4 (deux décarboxylases, l'enzyme malique à NADP et la phosphoénolpyruvate carboxykinase), des études ultérieures ont montré que ces enzymes C4 avaient elles-aussi évolué sous forte sélection positive et subi des changements génétiques parallèles lors des différentes origines de la photosynthèse C4. Les changements adaptatifs sur ces gènes liés seulement à certains sous-types C4 ont été utilisés pour retracer l'histoire des phénotypes de sous-types C4, ce qui a révélé que les caractères formant le trait C4 ont, dans certains cas, évolué de manière déconnectée. Ceci souligne la multiplicité du trait C4 et l'acquisition graduelle de composants participant à la pompe à CO2 qu'est la photosynthèse C4. Finalement, des analyses phylogénétiques des gènes codant pour la Rubisco (l'enzyme responsable de la fixation du CO2 en carbones organiques dans tous les organismes photosynthétiques) ont montré que l'évolution de la photosynthèse Ça a changé les pressions de sélection sur ce gène. Cinq codons ont été mutés de façon répétée afin d'adapter les propriétés cinétiques de la Rubisco aux fortes concentrations de CO2 présentes dans les cellules photosynthétiques des plantes C4. Globalement, l'approche phylogénétique adoptée durant cette thèse de doctorat a permis de démontré des phénomène fréquents de convergence génétique sur les enzymes liées à la photosynthèse C4. Les traces génétiques de l'évolution de la photosynthèse C4 ont permis de reconstituer des évènements qui se sont produits durant les derniers 30 millions d'années et ont prouvé l'utilité d'étudier des gènes directement responsables des variations phénotypiques pour inférer l'histoire évolutive d'un trait donné.
Resumo:
OBJECTIVE: Current hypertension guidelines stress the importance to assess total cardiovascular risk but do not describe precisely how to use ambulatory blood pressures in the cardiovascular risk stratification. METHOD: We calculated here global cardiovascular risk according to 2003 European Society of Hypertension/European Society of Cardiology guidelines in 127 patients in whom daytime ambulatory blood pressures were recorded and carotid/femoral ultrasonography performed. RESULTS: The presence of ambulatory blood pressures >or =135/85 mmHg shifted cardiovascular risk to higher categories, as did the presence of hypercholesterolemia and, even more so, the presence of atherosclerotic plaques. CONCLUSION: Further studies are, however, needed to define the position of ambulatory blood pressures in the assessment of cardiovascular risk.
Resumo:
We present a model of conglomeration motivated by technology synergies and strategic reductions in variable costs in the face of competitive pressures. The resulting firm integration is neither horizontal nor vertical but rather congeneric integration of firms in related industries. We endogenize the industrial conglomeration structure and examine the effects of competition between conglomerates, and between a conglomerate and independent firms. We show that there is an equilibrium synergy trap in which conglomerates are formed to exploit economies of scope, but resulting profits are lower than under the status quo. We also show that strategic firm integration can occur even in the presence of diseconomies of scope. The model helps to explain features of recent mergers and acquisitions experience.
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSION: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.
Resumo:
Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
Resumo:
BACKGROUND: The prevalence of hyperuricemia has rarely been investigated in developing countries. The purpose of the present study was to investigate the prevalence of hyperuricemia and the association between uric acid levels and the various cardiovascular risk factors in a developing country with high average blood pressures (the Seychelles, Indian Ocean, population mainly of African origin). METHODS: This cross-sectional health examination survey was based on a population random sample from the Seychelles. It included 1011 subjects aged 25 to 64 years. Blood pressure (BP), body mass index (BMI), waist circumference, waist-to-hip ratio, total and HDL cholesterol, serum triglycerides and serum uric acid were measured. Data were analyzed using scatterplot smoothing techniques and gender-specific linear regression models. RESULTS: The prevalence of a serum uric acid level >420 micromol/L in men was 35.2% and the prevalence of a serum uric acid level >360 micromol/L was 8.7% in women. Serum uric acid was strongly related to serum triglycerides in men as well as in women (r = 0.73 in men and r = 0.59 in women, p < 0.001). Uric acid levels were also significantly associated but to a lesser degree with age, BMI, blood pressure, alcohol and the use of antihypertensive therapy. In a regression model, triglycerides, age, BMI, antihypertensive therapy and alcohol consumption accounted for about 50% (R2) of the serum uric acid variations in men as well as in women. CONCLUSIONS: This study shows that the prevalence of hyperuricemia can be high in a developing country such as the Seychelles. Besides alcohol consumption and the use of antihypertensive therapy, mainly diuretics, serum uric acid is markedly associated with parameters of the metabolic syndrome, in particular serum triglycerides. Considering the growing incidence of obesity and metabolic syndrome worldwide and the potential link between hyperuricemia and cardiovascular complications, more emphasis should be put on the evolving prevalence of hyperuricemia in developing countries.
Resumo:
In this study we have characterized intra-patient length polymorphism in V4 by cloning and sequencing a C2-C4 fragment from HIV plasma RNA in patients at different stages of HIV disease. Clonal analysis of clade B, G, and CRF02 isolates during early infection shows extensive intra-patient V4 variability, due to the presence of indel-associated polymorphism. Indels, coupled to amino acid substitution events, affect the number and distribution of potential N-glycosylation sites, resulting in the coexistence, within the same patient, of V4 subsets, each characterized by different sizes, amino acid sequences, and potential N-glycosylation patterns. In contrast, V3 appears to be relatively homogeneous, with similar V3 associated to significantly different V4 within the same clinical specimen. Based on these data, we propose that during early chronic infection V4 is present as a highly divergent quasispecies, enabling the virus to adopt different conformational structures according to immune constrains and other selective pressures
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m2 and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resultin in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche). Mean total irrigation costs for the locality with lower water needs (Girona) and greater needs (Elche) were € 2,974 ha-¹ yr-¹ and € 3,383 ha-¹ yr-¹, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution
Resumo:
Abstract: The aim of the study was to assess the effects of epidural analgesia on pelvic floor function. Eighty- two primiparous women (group 1, consisting of 41 given an epidural, and group 2 of 41 not given an epidural) were investigated during pregnancy and at 2 and 10 months after delivery by a questionnaire, clinical examination, and assessment of bladder neck behavior, urethral sphincter function and intravaginal/intra-anal pressures. The prevalence of stress urinary incontinence was similar in both groups at 2 months (24% vs. 17%, P = 0.6) and 10 months (22% vs. 7%, P = 0.1), as was the prevalence of decreased sexual vaginal response at 10 months (27% vs. 10%, P= 0.08). Bladder neck behavior, urethral sphincter function and intravaginal and intra-anal pressures showed no significant differences between the two groups. Ten months after spontaneous delivery, there were no significant differences in the prevalence of stress urinary incontinence and decreased sexual vaginal response, or in bladder neck behavior, urethral sphincter function and pelvic floor muscle strength between women who had or had not had epidural analgesia.
Resumo:
The eclogite facies assemblage K-feldspar-jadeite-quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite + quartz = albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm(63)Prp(26)Grs(10))-K-feldspar-plagioclase-biotite +/- sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm(50)Prp(14)Grs(35))-jadeite (Jd(80-97)Di(0-4)Hd(0-8)Acm(0-7))=zoisite-phengite. Plagioclase is replaced by jadeite-zoisite-kyanite-K-feldspar-quartz and biotite is replaced by garnet-phengite or omphacite-kyanite-phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar-jadeite-quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar-jadeite-quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15-21 kbar (+/- 1.6-1.9 kbar) at 550 +/- 50 degrees C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio P-H2O/P-T. The inferred limiting a(H2O) for the assemblage jadeite-kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.
Resumo:
OBJECTIVES Little is known about the stent deformability required for optimal stented heart valve bioprosthesis design. Therefore, two bioprosthetic valves with known good long-term clinical results were tested. The strain in the radial direction of the stent posts of these valves was compared with contemporary bioprosthetic valves and a native porcine aortic root. METHODS Medtronic Intact and Carpentier-Edwards Standard (CES), and four contemporary bioprostheses, including one self-expanding prosthesis, were tested with three sonomicrometry probes per valve fixed at commissure attachment points. The mean values from 2400 data points from three measurements of the interprobe distances were used to calculate the radius of the circle circumscribed around the three probes. Changes in the radius of the aortic root at pressures 70-90 and 120-140 mmHg (pressure during diastole and systole) and that of the stent posts at 70-90 and 0-10 mmHg (transvalvular pressure gradient during diastole and systole) were compared. RESULTS An increase in radius by 7.3 ± 2.6, 8.7 ± 0.0 and 3.9 ± 0.0% for the porcine aortic root, CES and Intact valves, respectively, was observed during transition from diastolic to systolic pressure and less for contemporary bioprostheses-mean 2.5 ± 0.9%, lowest 1.2 ± 0.0. CONCLUSIONS The results indicate that the radial deformability of bioprosthetic valve stent posts can be as low as 1.2% for xenoaortic and 3.0% for xenopericardial prostheses with no compromise of valve durability. Although these results suggest that valve stent post-deformability might not be of critical importance, a concrete answer to the question of the significance of stent deformability for valve durability can be obtained only by acquiring long-term follow-up results for valve prostheses with rigid stents.
Resumo:
BACKGROUND: Because traditional nonsteroidal antiinflammatory drugs are associated with increased risk for acute cardiovascular events, current guidelines recommend acetaminophen as the first-line analgesic of choice on the assumption of its greater cardiovascular safety. Data from randomized clinical trials prospectively addressing cardiovascular safety of acetaminophen, however, are still lacking, particularly in patients at increased cardiovascular risk. Hence, the aim of this study was to evaluate the safety of acetaminophen in patients with coronary artery disease. METHODS AND RESULTS: The 33 patients with coronary artery disease included in this randomized, double-blind, placebo-controlled, crossover study received acetaminophen (1 g TID) on top of standard cardiovascular therapy for 2 weeks. Ambulatory blood pressure, heart rate, endothelium-dependent and -independent vasodilatation, platelet function, endothelial progenitor cells, markers of the renin-angiotensin system, inflammation, and oxidative stress were determined at baseline and after each treatment period. Treatment with acetaminophen resulted in a significant increase in mean systolic (from 122.4±11.9 to 125.3±12.0 mm Hg P=0.02 versus placebo) and diastolic (from 73.2±6.9 to 75.4±7.9 mm Hg P=0.02 versus placebo) ambulatory blood pressures. On the other hand, heart rate, endothelial function, early endothelial progenitor cells, and platelet function did not change. CONCLUSIONS: This study demonstrates for the first time that acetaminophen induces a significant increase in ambulatory blood pressure in patients with coronary artery disease. Thus, the use of acetaminophen should be evaluated as rigorously as traditional nonsteroidal antiinflammatory drugs and cyclooxygenase-2 inhibitors, particularly in patients at increased cardiovascular risk. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00534651.