920 resultados para predictive regression model
Resumo:
BACKGROUND AND PURPOSE: Statins display anti-inflammatory and anti-epileptogenic properties in animal models, and may reduce the epilepsy risk in elderly humans; however, a possible modulating role on outcome in patients with status epilepticus (SE) has not been assessed. METHODS: This cohort study was based on a prospective registry including all consecutive adults with incident SE treated in our center between April 2006 and September 2012. SE outcome was categorized at hospital discharge into 'return to baseline', 'new disability' and 'mortality'. The role of potential predictors, including statins treatment on admission, was evaluated using a multinomial logistic regression model. RESULTS: Amongst 427 patients identified, information on statins was available in 413 (97%). Mean age was 60.9 (±17.8) years; 201 (49%) were women; 211 (51%) had a potentially fatal SE etiology; and 191 (46%) experienced generalized-convulsive or non-convulsive SE in coma. Statins (simvastatin, atorvastatin or pravastatin) were prescribed prior to admission in 76 (18%) subjects, mostly elderly. Whilst 208 (50.4%) patients returned to baseline, 58 (14%) died. After adjustment for established SE outcome predictors (age, etiology, SE severity score), statins correlated significantly with lower mortality (relative risk ratio 0.38, P = 0.046). CONCLUSION: This study suggests for the first time that exposure to statins before an SE episode is related to its outcome, involving a possible anti-epileptogenic role. Other studies are needed to confirm this intriguing finding.
Resumo:
BACKGROUND: Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. METHODS: We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. FINDINGS: We included 61 studies done between January, 1998, and December, 2012, and included 14 327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). INTERPRETATION: The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. FUNDING: Bill & Melinda Gates Foundation.
Resumo:
Objectives: Publication bias may affect the validity of evidence based medical decisions. The aim of this study is to assess whether research outcomes affect the dissemination of clinical trial findings, in terms of rate, time to publication, and impact factor of journal publications. Methods and Findings: All drug-evaluating clinical trials submitted to and approved by a general hospital ethics committee between 1997 and 2004 were prospectively followed to analyze their fate and publication. Published articles were identified by searching Pubmed and other electronic databases. Clinical study final reports submitted to the ethics committee, final reports synopses available online and meeting abstracts were also considered as sources of study results. Study outcomes were classified as positive (when statistical significance favoring experimental drug was achieved), negative (when no statistical significance was achieved or it favored control drug) and descriptive (for non-controlled studies). Time to publication was defined as time from study closure to publication. A survival analysis was performed using a Cox regression model to analyze time to publication. Journal impact factors of identified publications were recorded. Publication rate was 48·4% (380/785). Study results were identified for 68·9% of all completed clinical trials (541/785). Publication rate was 84·9% (180/212) for studies with results classified as positive and 68·9% (128/186) for studies with results classified as negative (p<0·001). Median time to publication was 2·09 years (IC95 1·61-2·56) for studies with results classified as positive and 3·21 years (IC95 2·69-3·70) for studies with results classified as negative (hazard ratio 1·99 (IC95 1·55-2·55). No differences were found in publication impact factor between positive (median 6·308, interquartile range: 3·141-28·409) and negative result studies (median 8·266, interquartile range: 4·135-17·157). Conclusions: Clinical trials with positive outcomes have significantly higher rates and shorter times to publication than those with negative results. However, no differences have been found in terms of impact factor.
Resumo:
Sähkönkulutuksen lyhyen aikavälin ennustamista on tutkittu jo pitkään. Pohjoismaisien sähkömarkkinoiden vapautuminen on vaikuttanut sähkönkulutuksen ennustamiseen. Aluksi työssä perehdyttiin aiheeseen liittyvään kirjallisuuteen. Sähkönkulutuksen käyttäytymistä tutkittiin eri aikoina. Lämpötila tilastojen käyttökelpoisuutta arvioitiin sähkönkulutusennustetta ajatellen. Kulutus ennusteet tehtiin tunneittain ja ennustejaksona käytettiin yhtä viikkoa. Työssä tutkittiin sähkönkulutuksen- ja lämpötiladatan saatavuutta ja laatua Nord Poolin markkina-alueelta. Syötettävien tietojen ominaisuudet vaikuttavat tunnittaiseen sähkönkulutuksen ennustamiseen. Sähkönkulutuksen ennustamista varten mallinnettiin kaksi lähestymistapaa. Testattavina malleina käytettiin regressiomallia ja autoregressiivistä mallia (autoregressive model, ARX). Mallien parametrit estimoitiin pienimmän neliösumman menetelmällä. Tulokset osoittavat että kulutus- ja lämpötiladata on tarkastettava jälkikäteen koska reaaliaikaisen syötetietojen laatu on huonoa. Lämpötila vaikuttaa kulutukseen talvella, mutta se voidaan jättää huomiotta kesäkaudella. Regressiomalli on vakaampi kuin ARX malli. Regressiomallin virhetermi voidaan mallintaa aikasarjamallia hyväksikäyttäen.
Resumo:
Tutkimuksen tavoitteena on selvittää analyytikoiden ennustevirheiden suuruus sekä jakauma. Keskeisenä tavoitteena on selvittää, kuinka paljon yrityksen toimiala ja markkina-arvo vaikuttavat ennustevirheen suuruuteen ja tätä kautta vääristävät osakkeiden hinnoittelua. Tutkimus olettaa, että osakkeiden hinnoittelu perustuu tuotto-odotuksiin eli analyytikoiden tulosennusteisiin sekä riskiin. Tutkimuksessa on käytetty kvantitatiivisia menetelmiä. Tutkimusaineistona on käytetty Helsingin pörssin päälistalla vuosina 1998 – 1999 olleita yrityksiä, joille on annettu tulosennusteita. Tulosennusteet on poimittu manuaalisesti REUTTERS:in tietokannasta. Tulosennusteet vuosille 1998 - 1999 eivät ole selvästi positiivisia tai negatiivisia. Ennustevirheet eivät myöskään ole jakautuneet selvästi toimialan mukaan. Kuitenkin vuonna 1999 ”teollisuus” sekä ”palvelut” toimialoille annettiin selvästi liian pessimistisiä ennusteita. Myöskään yhtiön markkina-arvolla ei ole selvää yhteyttä ennustevirheen suuruuteen. Kuitenkin vuonna 1999 isojen yhtiöiden tuloksista on annettu liian pessimistisiä ja pienten liian positiivisia arvioita. Etsittäessä ennustevirheen selittäjiä regressioanalyysin avulla, vahvimmiksi selittäjiksi nousivat analyytikoiden määrä per yhtiö ja analyytikkoennusteiden keskihajonta. Selittäjät saavuttivat 40 prosentin selitysasteen.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
BACKGROUND: Due to the underlying diseases and the need for immunosuppression, patients after lung transplantation are particularly at risk for gastrointestinal (GI) complications that may negatively influence long-term outcome. The present study assessed the incidences and impact of GI complications after lung transplantation and aimed to identify risk factors. METHODS: Retrospective analysis of all 227 consecutively performed single- and double-lung transplantations at the University hospitals of Lausanne and Geneva was performed between January 1993 and December 2010. Logistic regressions were used to test the effect of potentially influencing variables on the binary outcomes overall, severe, and surgery-requiring complications, followed by a multiple logistic regression model. RESULTS: Final analysis included 205 patients for the purpose of the present study, and 22 patients were excluded due to re-transplantation, multiorgan transplantation, or incomplete datasets. GI complications were observed in 127 patients (62 %). Gastro-esophageal reflux disease was the most commonly observed complication (22.9 %), followed by inflammatory or infectious colitis (20.5 %) and gastroparesis (10.7 %). Major GI complications (Dindo/Clavien III-V) were observed in 83 (40.5 %) patients and were fatal in 4 patients (2.0 %). Multivariate analysis identified double-lung transplantation (p = 0.012) and early (1993-1998) transplantation period (p = 0.008) as independent risk factors for developing major GI complications. Forty-three (21 %) patients required surgery such as colectomy, cholecystectomy, and fundoplication in 6.8, 6.3, and 3.9 % of the patients, respectively. Multivariate analysis identified Charlson comorbidity index of ≥3 as an independent risk factor for developing GI complications requiring surgery (p = 0.015). CONCLUSION: GI complications after lung transplantation are common. Outcome was rather encouraging in the setting of our transplant center.
Resumo:
BACKGROUND: Gemcitabine plus cisplatin (GC) has been adopted as a neoadjuvant regimen for muscle-invasive bladder cancer despite the lack of Level I evidence in this setting. METHODS: Data were collected using an electronic data-capture platform from 28 international centers. Eligible patients had clinical T-classification 2 (cT2) through cT4aN0M0 urothelial cancer of the bladder and received neoadjuvant GC or methotrexate, vinblastine, doxorubicin, plus cisplatin (MVAC) before undergoing cystectomy. Logistic regression was used to compute propensity scores as the predicted probabilities of patients being assigned to MVAC versus GC given their baseline characteristics. These propensity scores were then included in a new logistic regression model to estimate an adjusted odds ratio comparing the odds of attaining a pathologic complete response (pCR) between patients who received MVAC and those who received GC. RESULTS: In total, 212 patients (146 patients in the GC cohort and 66 patients in the MVAC cohort) met criteria for inclusion in the analysis. The majority of patients in the MVAC cohort (77%) received dose-dense MVAC. The median age of patients was 63 years, they were predominantly men (74%), and they received a median of 3 cycles of neoadjuvant chemotherapy. The pCR rate was 29% in the MVAC cohort and 31% in the GC cohort. There was no significant difference in the pCR rate when adjusted for propensity scores between the 2 regimens (odds ratio, 0.91; 95% confidence interval, 0.48-1.72; P = .77). In an exploratory analysis evaluating survival, the hazard ratio comparing hazard rates for MVAC versus GC adjusted for propensity scores was not statistically significant (hazard ratio, 0.78; 95% confidence interval, 0.40-1.54; P = .48). CONCLUSIONS: Patients who received neoadjuvant GC and MVAC achieved comparable pCR rates in the current analysis, providing evidence to support what has become routine practice. Cancer 2015;121:2586-2593. © 2015 American Cancer Society.
Resumo:
Résumé: L'impact de la maladie d'Alzheimer (MA) est dévastateur pour la vie quotidienne de la personne affectée, avec perte progressive de la mémoire et d'autres facultés cognitives jusqu'à la démence. Il n'existe toujours pas de traitement contre cette maladie et il y a aussi une grande incertitude sur le diagnostic des premiers stades de la MA. La signature anatomique de la MA, en particulier l'atrophie du lobe temporal moyen (LTM) mesurée avec la neuroimagerie, peut être utilisée comme un biomarqueur précoce, in vivo, des premiers stades de la MA. Toutefois, malgré le rôle évident du LMT dans les processus de la mémoire, nous savons que les modèles anatomiques prédictifs de la MA basés seulement sur des mesures d'atrophie du LTM n'expliquent pas tous les cas cliniques. Au cours de ma thèse, j'ai conduit trois projets pour comprendre l'anatomie et le fonctionnement du LMT dans (1) les processus de la maladie et dans (2) les processus de mémoire ainsi que (3) ceux de l'apprentissage. Je me suis intéressée à une population avec déficit cognitif léger (« Mild Cognitive Impairment », MCI), à risque pour la MA. Le but du premier projet était de tester l'hypothèse que des facteurs, autres que ceux cognitifs, tels que les traits de personnalité peuvent expliquer les différences interindividuelles dans le LTM. De plus, la diversité phénotypique des manifestations précliniques de la MA provient aussi d'une connaissance limitée des processus de mémoire et d'apprentissage dans le cerveau sain. L'objectif du deuxième projet porte sur l'investigation des sous-régions du LTM, et plus particulièrement de leur contribution dans différentes composantes de la mémoire de reconnaissance chez le sujet sain. Pour étudier cela, j'ai utilisé une nouvelle méthode multivariée ainsi que l'IRM à haute résolution pour tester la contribution de ces sous-régions dans les processus de familiarité (« ou Know ») et de remémoration (ou « Recollection »). Finalement, l'objectif du troisième projet était de tester la contribution du LTM en tant que système de mémoire dans l'apprentissage et l'interaction dynamique entre différents systèmes de mémoire durant l'apprentissage. Les résultats du premier projet montrent que, en plus du déficit cognitif observé dans une population avec MCI, les traits de personnalité peuvent expliquer les différences interindividuelles du LTM ; notamment avec une plus grande contribution du neuroticisme liée à une vulnérabilité au stress et à la dépression. Mon étude a permis d'identifier un pattern d'anormalité anatomique dans le LTM associé à la personnalité avec des mesures de volume et de diffusion moyenne du tissu. Ce pattern est caractérisé par une asymétrie droite-gauche du LTM et un gradient antéro-postérieur dans le LTM. J'ai interprété ce résultat par des propriétés tissulaires et neurochimiques différemment sensibles au stress. Les résultats de mon deuxième projet ont contribué au débat actuel sur la contribution des sous-régions du LTM dans les processus de familiarité et de remémoration. Utilisant une nouvelle méthode multivariée, les résultats supportent premièrement une dissociation des sous-régions associées aux différentes composantes de la mémoire. L'hippocampe est le plus associé à la mémoire de type remémoration et le cortex parahippocampique, à la mémoire de type familiarité. Deuxièmement, l'activation correspondant à la trace mnésique pour chaque type de mémoire est caractérisée par une distribution spatiale distincte. La représentation neuronale spécifique, « sparse-distributed», associée à la mémoire de remémoration dans l'hippocampe serait la meilleure manière d'encoder rapidement des souvenirs détaillés sans interférer les souvenirs précédemment stockés. Dans mon troisième projet, j'ai mis en place une tâche d'apprentissage en IRM fonctionnelle pour étudier les processus d'apprentissage d'associations probabilistes basé sur le feedback/récompense. Cette étude m'a permis de mettre en évidence le rôle du LTM dans l'apprentissage et l'interaction entre différents systèmes de mémoire comme la mémoire procédurale, perceptuelle ou d'amorçage et la mémoire de travail. Nous avons trouvé des activations dans le LTM correspondant à un processus de mémoire épisodique; les ganglions de la base (GB), à la mémoire procédurale et la récompense; le cortex occipito-temporal (OT), à la mémoire de représentation perceptive ou l'amorçage et le cortex préfrontal, à la mémoire de travail. Nous avons également observé que ces régions peuvent interagir; le type de relation entre le LTM et les GB a été interprété comme une compétition, ce qui a déjà été reporté dans des études récentes. De plus, avec un modèle dynamique causal, j'ai démontré l'existence d'une connectivité effective entre des régions. Elle se caractérise par une influence causale de type « top-down » venant de régions corticales associées avec des processus de plus haut niveau venant du cortex préfrontal sur des régions corticales plus primaires comme le OT cortex. Cette influence diminue au cours du de l'apprentissage; cela pourrait correspondre à un mécanisme de diminution de l'erreur de prédiction. Mon interprétation est que cela est à l'origine de la connaissance sémantique. J'ai également montré que les choix du sujet et l'activation cérébrale associée sont influencés par les traits de personnalité et des états affectifs négatifs. Les résultats de cette thèse m'ont amenée à proposer (1) un modèle expliquant les mécanismes possibles liés à l'influence de la personnalité sur le LTM dans une population avec MCI, (2) une dissociation des sous-régions du LTM dans différents types de mémoire et une représentation neuronale spécifique à ces régions. Cela pourrait être une piste pour résoudre les débats actuels sur la mémoire de reconnaissance. Finalement, (3) le LTM est aussi un système de mémoire impliqué dans l'apprentissage et qui peut interagir avec les GB par une compétition. Nous avons aussi mis en évidence une interaction dynamique de type « top -down » et « bottom-up » entre le cortex préfrontal et le cortex OT. En conclusion, les résultats peuvent donner des indices afin de mieux comprendre certains dysfonctionnements de la mémoire liés à l'âge et la maladie d'Alzheimer ainsi qu'à améliorer le développement de traitement. Abstract: The impact of Alzheimer's disease is devastating for the daily life of the affected patients, with progressive loss of memory and other cognitive skills until dementia. We still lack disease modifying treatment and there is also a great amount of uncertainty regarding the accuracy of diagnostic classification in the early stages of AD. The anatomical signature of AD, in particular the medial temporal lobe (MTL) atrophy measured with neuroimaging, can be used as an early in vivo biomarker in early stages of AD. However, despite the evident role of MTL in memory, we know that the derived predictive anatomical model based only on measures of brain atrophy in MTL does not explain all clinical cases. Throughout my thesis, I have conducted three projects to understand the anatomy and the functioning of MTL on (1) disease's progression, (2) memory process and (3) learning process. I was interested in a population with mild cognitive impairment (MCI), at risk for AD. The objective of the first project was to test the hypothesis that factors, other than the cognitive ones, such as the personality traits, can explain inter-individual differences in the MTL. Moreover, the phenotypic diversity in the manifestations of preclinical AD arises also from the limited knowledge of memory and learning processes in healthy brain. The objective of the second project concerns the investigation of sub-regions of the MTL, and more particularly their contributions in the different components of recognition memory in healthy subjects. To study that, I have used a new multivariate method as well as MRI at high resolution to test the contribution of those sub-regions in the processes of familiarity and recollection. Finally, the objective of the third project was to test the contribution of the MTL as a memory system in learning and the dynamic interaction between memory systems during learning. The results of the first project show that, beyond cognitive state of impairment observed in the population with MCI, the personality traits can explain the inter-individual differences in the MTL; notably with a higher contribution of neuroticism linked to proneness to stress and depression. My study has allowed identifying a pattern of anatomical abnormality in the MTL related to personality with measures of volume and mean diffusion of the tissue. That pattern is characterized by right-left asymmetry in MTL and an anterior to posterior gradient within MTL. I have interpreted that result by tissue and neurochemical properties differently sensitive to stress. Results of my second project have contributed to the actual debate on the contribution of MTL sub-regions in the processes of familiarity and recollection. Using a new multivariate method, the results support firstly a dissociation of the subregions associated with different memory components. The hippocampus was mostly associated with recollection and the surrounding parahippocampal cortex, with familiarity type of memory. Secondly, the activation corresponding to the mensic trace for each type of memory is characterized by a distinct spatial distribution. The specific neuronal representation, "sparse-distributed", associated with recollection in the hippocampus would be the best way to rapidly encode detailed memories without overwriting previously stored memories. In the third project, I have created a learning task with functional MRI to sudy the processes of learning of probabilistic associations based on feedback/reward. That study allowed me to highlight the role of the MTL in learning and the interaction between different memory systems such as the procedural memory, the perceptual memory or priming and the working memory. We have found activations in the MTL corresponding to a process of episodic memory; the basal ganglia (BG), to a procedural memory and reward; the occipito-temporal (OT) cortex, to a perceptive memory or priming and the prefrontal cortex, to working memory. We have also observed that those regions can interact; the relation type between the MTL and the BG has been interpreted as a competition. In addition, with a dynamic causal model, I have demonstrated a "top-down" influence from cortical regions associated with high level cortical area such as the prefrontal cortex on lower level cortical regions such as the OT cortex. That influence decreases during learning; that could correspond to a mechanism linked to a diminution of prediction error. My interpretation is that this is at the origin of the semantic knowledge. I have also shown that the subject's choice and the associated brain activation are influenced by personality traits and negative affects. Overall results of this thesis have brought me to propose (1) a model explaining the possible mechanism linked to the influence of personality on the MTL in a population with MCI, (2) a dissociation of MTL sub-regions in different memory types and a neuronal representation specific to each region. This could be a cue to resolve the actual debates on recognition memory. Finally, (3) the MTL is also a system involved in learning and that can interact with the BG by a competition. We have also shown a dynamic interaction of « top -down » and « bottom-up » types between the pre-frontal cortex and the OT cortex. In conclusion, the results could give cues to better understand some memory dysfunctions in aging and Alzheimer's disease and to improve development of treatment.
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
BACKGROUND: Shared Decision Making (SDM) is increasingly advocated as a model for medical decision making. However, there is still low use of SDM in clinical practice. High impact factor journals might represent an efficient way for its dissemination. We aimed to identify and characterize publication trends of SDM in 15 high impact medical journals. METHODS: We selected the 15 general and internal medicine journals with the highest impact factor publishing original articles, letters and editorials. We retrieved publications from 1996 to 2011 through the full-text search function on each journal website and abstracted bibliometric data. We included publications of any type containing the phrase "shared decision making" or five other variants in their abstract or full text. These were referred to as SDM publications. A polynomial Poisson regression model with logarithmic link function was used to assess the evolution across the period of the number of SDM publications according to publication characteristics. RESULTS: We identified 1285 SDM publications out of 229,179 publications in 15 journals from 1996 to 2011. The absolute number of SDM publications by journal ranged from 2 to 273 over 16 years. SDM publications increased both in absolute and relative numbers per year, from 46 (0.32% relative to all publications from the 15 journals) in 1996 to 165 (1.17%) in 2011. This growth was exponential (P < 0.01). We found fewer research publications (465, 36.2% of all SDM publications) than non-research publications, which included non-systematic reviews, letters, and editorials. The increase of research publications across time was linear. Full-text search retrieved ten times more SDM publications than a similar PubMed search (1285 vs. 119 respectively). CONCLUSION: This review in full-text showed that SDM publications increased exponentially in major medical journals from 1996 to 2011. This growth might reflect an increased dissemination of the SDM concept to the medical community.
Resumo:
Objectives: We present the retrospective analysis of a single-institution experience for radiosurgery (RS) in brain metastasis (BM) with Gamma Knife (GK) and Linac. Methods: From July 2010 to July 2012, 28 patients (with 83 lesions) had RS with GK and 35 patients (with 47 lesions) with Linac. The primary outcome was the local progression-free survival (LPFS). The secondary outcome was the overall survival (OS). Apart a standard statistical analysis, we included a Cox regression model with shared frailty, to modulate the within-patient correlation (preliminary evaluation showed a significant frailty effect, meaning that the correlation within patient could be ignored). Results: The mean follow-up period was 11.7 months (median 7.9, 1.7-22.7) for GK and 18.1 (median 17, 7.5-28.7) for Linac. The median number of lesions per patient was 2.5 (1-9) in GK compared with 1 (1-3) in Linac. There were more radioresistant lesions (melanoma) and more lesions located in functional areas for the GK group. The median dose was 24 Gy (GK) compared with 20 Gy (Linac). The LPFS actuarial rate was as follows: for GK at 3, 6, 9, 12, and 17 months: 96.96, 96.96, 96.96, 88.1, and 81.5%, and remained stable till 32 months; for Linac at 3, 6, 12, 17, 24, and 33 months, it was 91.5, 91.5, 91.5, 79.9, 55.5, and 17.1%, respectively (p = 0.03, chi-square test). After the Cox regression analysis with shared frailty, the p-value was not statistically significant between groups. The median overall survival was 9.7 months for GK and 23.6 months for Linac group. Uni- and multivariate analysis showed a lower GPA score and noncontrolled systemic status were associated with lower OS. Cox regression analysis adjusting for these two parameters showed comparable OS rate. Conclusions: In this comparative report between GK and Linac, preliminary analysis showed that more difficult cases are treated by GK, with patients harboring more lesions, radioresistant tumors, and highly functional located. The groups look, in this sense, very heterogeneous at baseline. After a Cox frailty model, the LPFS rates seemed very similar (p < 0.05). The OS was similar, after adjusting for systemic status and GPA score (p < 0.05). The technical reasons for choosing GK instead of Linac were the anatomical location related to highly functional areas, histology, technical limitations of Linac movements, especially lower posterior fossa locations, or closeness of multiple lesions to highly functional areas optimal dosimetry with Linac
Resumo:
Over the past few decades, age estimation of living persons has represented a challenging task for many forensic services worldwide. In general, the process for age estimation includes the observation of the degree of maturity reached by some physical attributes, such as dentition or several ossification centers. The estimated chronological age or the probability that an individual belongs to a meaningful class of ages is then obtained from the observed degree of maturity by means of various statistical methods. Among these methods, those developed in a Bayesian framework offer to users the possibility of coherently dealing with the uncertainty associated with age estimation and of assessing in a transparent and logical way the probability that an examined individual is younger or older than a given age threshold. Recently, a Bayesian network for age estimation has been presented in scientific literature; this kind of probabilistic graphical tool may facilitate the use of the probabilistic approach. Probabilities of interest in the network are assigned by means of transition analysis, a statistical parametric model, which links the chronological age and the degree of maturity by means of specific regression models, such as logit or probit models. Since different regression models can be employed in transition analysis, the aim of this paper is to study the influence of the model in the classification of individuals. The analysis was performed using a dataset related to the ossifications status of the medial clavicular epiphysis and results support that the classification of individuals is not dependent on the choice of the regression model.
Resumo:
The decision to settle a motor insurance claim by either negotiation or trial is analysed. This decision may depend on how risk and confrontation adverse or pessimistic the claimant is. The extent to which these behavioural features of the claimant might influence the final compensation amount are examined. An empirical analysis, fitting a switching regression model to a Spanish database, is conducted in order to analyze whether the choice of the conflict resolution procedure is endogenous to the compensation outcomes. The results show that compensations awarded by courts are always higher, although 95% of cases are settled by negotiation. We show that this is because claimants are adverse to risk and confrontation, and are pessimistic about their chances at trial. By contrast, insurers are risk - confrontation neutral and more objective in relation to the expected trial compensation. During the negotiation insurers accept to pay the subjective compensation values of claimants, since these values are lower than their estimates of compensations at trial.
Factors affecting hospital admission and recovery stay duration of in-patient motor victims in Spain
Resumo:
Hospital expenses are a major cost driver of healthcare systems in Europe, with motor injuries being the leading mechanism of hospitalizations. This paper investigates the injury characteristics which explain the hospitalization of victims of traffic accidents that took place in Spain. Using a motor insurance database with 16.081 observations a generalized Tobit regression model is applied to analyse the factors that influence both the likelihood of being admitted to hospital after a motor collision and the length of hospital stay in the event of admission. The consistency of Tobit estimates relies on the normality of perturbation terms. Here a semi-parametric regression model was fitted to test the consistency of estimates, concluding that a normal distribution of errors cannot be rejected. Among other results, it was found that older men with fractures and injuries located in the head and lower torso are more likely to be hospitalized after the collision, and that they also have a longer expected length of hospital recovery stay.