996 resultados para polarization direction
Resumo:
There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.
Resumo:
In recent years, geophysical methods have been shown to be sensitive to microbial-induced mineralization processes. The spectral induced-polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from biomineralization processes. More specifically, the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring and decision-making tool for sustainable remediation of metals in contaminated soils and groundwater.
Resumo:
A structure comprising a coupled pair of two-dimensional arrays of oblate plasmonic nanoellipsoids in a dielectric host medium is proposed as a superlens in the optical domain for both horizontal and vertical polarizations. By means of simulations it is demonstrated that a structure formed by silver nanoellipsoids is capable of restoring subwavelength features of the object for both polarizations at distances larger than half wavelength. The bandwidth of subwavelength resolution is in all cases very large (above 13%). (C) 2009 Optical Society of America
Resumo:
An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r(s) >= 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.
Resumo:
The electronic structure of thin conducting wires with a narrow geometric constriction has been determined by density-functional theory computations in the local spin density approximation. Spontaneous spin polarization arises in nominally paramagnetic wires at sufficiently low density (r(s)>= 15). Real-space spin-polarization maps show a fascinating variety of magnetic structures pinned at the constriction. The frequency-dependent conductivity is different for the spin-up and spin-down channels and significantly lower than in wires of identically vanishing spin polarization.
Resumo:
We discuss the effect of the attractive force associated with overlapping Debye spheres on the dispersion properties of the longitudinal and transverse dust lattice waves in strongly coupled dust crystals. The dust grain attraction is shown to contribute to a destabilization of the longitudinal dust lattice oscillations. The (optic-like) transverse mode dispersion law is shown to change. due to the Debye sphere dressing effect, from the known inverse-dispersive ("backward wave") form into a normal dispersive law (i.e. the group velocity changes sign). The stability of one-dimensionless bi-layers, consisting of (alternating) negatively and positively charged dust particles, is also discussed. The range of parameter values (mainly in terms of the lattice parameter kappa) where the above predictions are valid, are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
Resumo:
The -phonons of KH2PO4 (KDP) and its deuterated analog DKDP are studied via first-principles linear response calculations. The paraelectric phase shows two instabilities. One for a z-polarized mode, which leads to the spontaneous polarization Ps of the ferroelectric phase. The other corresponds to a two-fold degenerate xy-polarized mode. Other phonons are analyzed, which couple to the ferroelectric one at large amplitudes and are relevant for the ferroelectric transition. We show that Ps is mainly of electronic nature, since it arises mostly from an off-diagonal component of the Born effective charge tensor of H, with minor contribution from P atoms displacements.
Resumo:
Bundles of 90° stripe domains have been observed to form into distinct groups, or bands, in mesoscale BaTiO3 single crystal dots. Vector piezoresponse force microscopy (PFM) shows that each band region, when considered as a single entity, possesses a resolved polarization that lies approximately along the pseudocubic direction; antiparallel alignment of this resultant polarization in adjacent bands means that these regions can be considered as 180° “superdomains.” For dots with sidewall dimensions below ~2 microns, Landau–Kittel like scaling in the width of these superdomains was observed, strongly suggesting that they form in response to lateral depolarizing fields. In larger dot structures, scaling laws break down. We have rationalized these observations by considering changes in the driving force for the adoption of equilibrium superdomain periodicities implied by Landau–Kittel-free energy models; we conclude that the formation of ordered bands of superdomains is a uniquely meso/nanoscale phenomenon. We also note that the superdomain bands found by PFM imaging in air contrast with the quadrant arrangements seen previously by Schilling et al. (Nano Lett., 9, 3359 (2009)) through transmission electron microscopy imaging in vacuum. The importance of the exact nature of the boundary conditions in determining the domain patterns that spontaneously form in nanostructures is therefore clearly implied.