716 resultados para platinum-rhodium alloy
Resumo:
This phase II trial aimed to evaluate feasibility and efficacy of a first-line combination of targeted therapies for advanced non-squamous NSCLC: bevacizumab (B) and erlotinib (E), followed by platinum-based CT at disease progression (PD).
Resumo:
BACKGROUND AND PURPOSE:Conventional platinum coils cause imaging artifacts that reduce imaging quality and therefore impair imaging interpretation on intraprocedural or noninvasive follow-up imaging. The purpose of this study was to evaluate imaging characteristics and artifact production of polymeric coils compared with standard platinum coils in vitro and in vivo.MATERIALS AND METHODS:Polymeric coils and standard platinum coils were evaluated in vitro with the use of 2 identical silicon aneurysm models coiled with a packing attenuation of 20% each. DSA, flat panel CT, CT, and MR imaging were performed. In vivo evaluation of imaging characteristics of polymeric coils was performed in experimentally created rabbit carotid bifurcation aneurysms. DSA, CT/CTA, and MR imaging were performed after endovascular treatment of the aneurysms. Images were evaluated regarding visibility of individual coils, coil mass, artifact production, and visibility of residual flow within the aneurysm.RESULTS:Overall, in vitro and in vivo imaging showed relevantly reduced artifact production of polymeric coils in all imaging modalities compared with standard platinum coils. Image quality of CT and MR imaging was improved with the use of polymeric coils, which permitted enhanced depiction of individual coil loops and residual aneurysm lumen as well as the peri-aneurysmal area. Remarkably, CT images demonstrated considerably improved image quality with only minor artifacts compared with standard coils. On DSA, polymeric coils showed transparency and allowed visualization of superimposed vessel structures.CONCLUSIONS:This initial experimental study showed improved imaging quality with the use of polymeric coils compared with standard platinum coils in all imaging modalities. This might be advantageous for improved intraprocedural imaging for the detection of complications and posttreatment noninvasive follow-up imaging.
Resumo:
Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: The cyclin D1 (CCND1) A870G gene polymorphism is linked to the outcome in patients with resectable non-small cell lung cancer (NSCLC). Here, we investigated the impact of this polymorphism on smoking-induced cancer risk and clinical outcome in patients with NSCLC stages I-IV. METHODS: CCND1 A870G genotype was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) of DNA extracted from blood. The study included 244 NSCLC patients and 187 healthy control subjects. RESULTS: Patient characteristics were: 70% male, 77% smokers, 43% adenocarcinoma, and 27% squamous cell carcinoma. Eighty-one percent of the patients had stages III-IV disease. Median age at diagnosis was 60 years and median survival was 13 months. Genotype frequencies of patients and controls both conformed to the Hardy Weinberg equilibrium. The GG genotype significantly correlated with a history of heavy smoking (>or=40 py, P=0.02), and patients with this genotype had a significantly higher cigarette consumption than patients with AA/AG genotypes (P=0.007). The GG genotype also significantly correlated with tumor response or stabilization after a platinum-based first-line chemotherapy (P=0.04). Survival analysis revealed no significant differences among the genotypes. CONCLUSION: Evidence was obtained that the CCND1 A870G gene polymorphism modulates smoking-induced lung cancer risk. Further studies are required to explore the underlying molecular mechanisms and to test the value of this gene polymorphism as a predictor for platinum-sensitivity in NSCLC patients.
Resumo:
BACKGROUND: To overcome the ototoxicity of cisplatin, single bolus infusions were replaced by repeated prolonged infusions of lower doses or by continuous infusions at still lower infusion rates. However, considering ototoxicity little is, in fact, known about the tolerance of repeated prolonged or continuous infusion in children. PROCEDURE: Auditory function was monitored along with plasma concentrations of free and total platinum (Pt), and with standard serum parameters (sodium, potassium, calcium, magnesium, phosphate, chloride, and creatinine) in 24 children receiving cisplatin by continuous infusion for the treatment of neuroblastoma and osteosarcoma or by repeated 1 or 6 hr infusions for the treatment of germ cell tumors. RESULTS: Hearing deteriorated in 10/15 osteosarcoma patients, 2/3 neuroblastoma patients, and 1/6 patients with germ cell tumors. Ototoxicity occurred after cumulative doses between 120 and 360 mg/m(2) cisplatin. In osteosarcoma patients, ototoxicity was associated with a comparatively higher mean plasma concentration of free Pt. However, Pt plasma concentrations did not discriminate between patients with or without ototoxicity. In patients experiencing ototoxicity serum creatinine increased by 45% compared to pre-treatment levels (mean). Serum creatinine increased by 26% in patients without ototoxicity (P < 0.05, Mann-Whitney Rank sum test). Despite standardized hydration, discrete but significant changes of potassium, sodium, magnesium, and phosphate were observed during and/or after cisplatin infusion, which, however, did not discriminate between patients with and without ototoxicity. CONCLUSIONS: While continuous cisplatin infusions are less nephrotoxic than repeated prolonged infusions, we observed considerable ototoxicity in patients treated with continuous cisplatin infusions, which necessitates further evaluations on the tolerance of continuous cisplatin infusions in children.
Resumo:
Objective: To assess in vitro the bond strength of a machined surface of a Au-Ti alloy to a veneering ceramic. Method and Materials: Metal strips of the alloy Au 1.7-Ti 0.1-Ir were milled from a semiproduct fabricated by continuous casting and cold forming. For comparison, the same alloy as well as a traditional Au-Pt-Pd-In alloy were used in the as-cast state. Six samples of each group were fabricated for the crack initiation test, according to ISO 9693:1999, by preparing appropriate metal strips that were veneered with ceramic using a standard firing procedure. The crack initiation test was performed in a universal testing machine. Load at fracture was recorded. Means of bond strength were calculated for each group and the results compared by use of a 1-sided Student t test (P < .05). Fracture sites were documented by means of SEM. Results: Bond strength in the 3 groups was in the same order of magnitude. Failure mode was different for both alloys. Failure of the bonding to the Au-Ti alloy predominantly occurred at the alloy-oxide interface, no matter which fabrication process was used. On the Au-Pt-Pd-In alloy, more ceramic residues were observed. Conclusion: The machined alloy Au 1.7-Ti 0.1-Ir provides sufficient bond strength to veneering ceramics, but this has to be proven by a clinical study. (Quintessence Int 2007;38:867-872).
Resumo:
Different types of titanium-alloys instead of CoCr-alloys have been tested as material for the framework of removable partial dentures (RPD). Adequate casting and processing techniques have been developed which enable to fabricate frameworks of complex designs and the problem limits porosity. This opened new possibilities for the use of titanium-alloys with improved properties (E-module). The aim of this study was to summarise the use of titanium in removable prosthodontics and to evaluate prospectively the use of the Ti6A17Nb-alloy for RPDs in a small group of patients. Two identically designed RPDs from CoCr-alloy (remanium GM 800+) and Ti6A17Nb-alloy (girotan L) were produced for ten patients. They had to wear each RPD during six months, first the CoCr-RPD and then the Ti6A17Nb-RPD. A questionnaire (visual analogue scale = VAS) was completed by the patients after one, three and six months of function for each RPD. Prosthetic complications and service needed were recorded. After the end of the entire observation period of twelve months, the patients remained with the Ti6A17Nb-RPD and answered the questionnaire after another six months. All parameters regarding the design of the RPDs were positively estimated by the dentist. Minimal, not significant differences were noted by the patients concerning comfort, stability and retention (VAS). Clinically, no differences in technical aspects or regarding biological complications were observed after six-months periods. The Ti6A17Nb-alloy (girotan L) for the framework of RPDs was judged by patients and professionals to be equivalent to RPDs made from CoCr-alloy. No differences in material aspects could objectively be observed. The Ti6A17Nb-alloy can be beneficial for patients with allergies or incompatibility with one or several components of the CoCr-alloy.
Resumo:
Powder metallurgy is a branch of metallurgy which produces metallic compacts in their final forms by means of pressure and heat-treatment from the powders. The products of powder metallurgy are being used in our daily lives quite often. For example, the tungsten wires in the electric bulbs to the silver-tin fillings of our teeth.
Resumo:
In the past few years a great deal of attention has been given to the electrodeposition of alloys. For the main part, this investigation has been of scientific interest only; but in a few instances, such work has attained commercial importance.
Resumo:
Age hardening occurs in alloys of the solid solution type containing a hardening constituent, be it metal or metallic compound, which is more soluble in the solvent phase at higher temperatures than at lower ones.
Resumo:
A nickel plating operation for magnesium alloys was investigated and proved successful in plating a small sample of a typical commercial magnesium alloy, Dowmetal J1.
Resumo:
This investigation is concerned with the age-hardening process as exemplified by the aging of a commercial Cu-Be alloy and, in particular, with this process as determined by X-ray methods. The amount of information available on age-hardening of commercial alloys is scanty and what information there is, is inaccurate.