942 resultados para phosphorylated


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To report a novel observation of neutrophil signal transduction abnormalities in patients with localized aggressive periodontitis (LAP) that are associated with an enhanced phosphorylation of the nuclear signal transduction protein cyclic AMP response element-binding factor (CREB). METHOD AND MATERIALS: Peripheral venous blood neutrophils of 18 subjects, 9 patients with LAP and 9 race-, sex-, and age-matched healthy controls, were isolated and prepared using the Ficoll-Hypaque density-gradient technique. Neutrophils (5.4 x 10(6)/mL) were stimulated with the chemoattractant FMLP (10(-6) mol/L) for 5 minutes and lysed. Aliquots of these samples were separated by SDS-PAGE (60 microg/lane) on 9.0% (w/v) polyacrylamide slab gels and transferred electrophoretically to polyvinyl difluoride membranes. The cell lysates were immunoblotted with a 1:1,000 dilution of rabbit-phospho-CREB antibody that recognizes only the phosphorylated form of CREB at Ser133. The activated CREB was visualized with a luminol-enhanced chemoluminescence detection system and evaluated by laser densitometry. RESULTS: In patients with LAP, the average activation of CREB displayed an overexpression for the unstimulated peripheral blood neutrophils of 80.3% (17.5-fold) compared to healthy controls (4.6%). CONCLUSION: LAP neutrophils who express their phenotype appear to be constitutively primed, as evidenced by activated CREB in resting cells compared to normal individuals. The genetically primed neutrophil phenotype may contribute to neutrophil-mediated tissue damage in the pathogenesis of LAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnosis of drug allergy involves first the recognition of sometimes unusual symptoms as drug allergy and, second, the identification of the eliciting drug. This is an often difficult task, as the clinical picture and underlying pathomechanisms are heterogeneous. In clinical routine, physicians frequently have to rely upon a suggestive history and eventual provocation tests, both having their specific limitations. For this reason both in vivo (skin tests) and in vitro tests are investigated intensively as tools to identify the disease-eliciting drug. One of the tests evaluated in drug allergy is the basophil activation test (BAT). Basophils with their high-affinity IgE receptors are easily accessible and therefore can be used as indicator cells for IgE-mediated reactions. Upon allergen challenge and cross-linking of membrane-bound IgE antibodies (via Fc-epsilon-RI) basophils up-regulate certain activation markers on their surface such as CD63 and CD203c, as well as intracellular markers (eg, phosphorylated p38MAPK). In BAT, these alterations can be detected rapidly on a single-cell basis by multicolor flow cytometry using specific monoclonal antibodies. Combining this technique with in vitro passive sensitization of donor basophils with patients' serum, one can prove the IgE dependence of a drug reaction. This article summarizes the authors' current experience with the BAT in the diagnostic management of immediate-type drug allergy mediated by drug-specific IgE antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein phosphorylation is involved in posttranslational control of essentially all biological processes. Using mass spectrometry, recent analyses of whole phosphoproteomes led to the identification of numerous new phosphorylation sites. However, the function of most of these sites remained unknown. We chose the Drosophila Bicaudal-D protein to estimate the importance of individual phosphorylation events. Being involved in different cellular processes, BicD is required for oocyte determination, for RNA transport during oogenesis and embryogenesis, and for photoreceptor nuclei migration in the developing eye. The numerous roles of BicD and the available evidence for functional importance of BicD phosphorylation led us to identify eight phosphorylation sites of BicD, and we tested a total of 14 identified and suspected phosphoserine residues for their functional importance in vivo in flies. Surprisingly, all these serines turned out to be dispensable for providing sufficient basal BicD activity for normal growth and development. However, in a genetically sensitized background where the BicD(A40V) protein variant provides only partial activity, serine 103 substitutions are not neutral anymore, but show surprising differences. The S103D substitution completely inactivates the protein, whereas S103A behaves neutral, and the S103F substitution, isolated in a genetic screen, restores BicD(A40V) function. Our results suggest that many BicD phosphorylation events may either be fortuitous or play a modulating function as shown for Ser(103). Remarkably, amongst the Drosophila serines we found phosphorylated, Ser(103) is the only one that is fully conserved in mammalian BicD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pleckstrin is a modular platelet protein consisting of N- and C-terminal pleckstrin homology (PH) domains, a central dishevelled egl10 and pleckstrin (DEP) domain and a phosphorylation region. Following agonist-induced platelet stimulation, dimeric pleckstrin translocates to the plasma membrane, is phosphorylated and then monomerizes. A recent study found that pleckstrin null platelets from a knockout mouse have a defect in granule secretion, actin polymerization and aggregation. However, the mechanism of pleckstrin signaling for this function is unknown. Our recent studies have led to the identification of a novel pleckstrin-binding protein, serum deprivation response protein (SDPR), by co-immunoprecipitation, GST-pulldowns and nanospray quadruple time of flight mass spectrometry. We show that this interaction occurs directly through N-terminal sequences of pleckstrin. Both pleckstrin and SDPR are phosphorylated by protein kinase C (PKC), but the interaction between pleckstrin and SDPR was shown to be independent of PKC inhibition or activation. These results suggest that SDPR may facilitate the translocation of nonphosphorylated pleckstrin to the plasma membrane in conjunction with phosphoinositides that bind to the C-terminal PH domain. After binding of pleckstrin to the plasma membrane, its phosphorylation by PKC exerts downstream effects on platelet aggregation/secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine changes of cerebrospinal fluid (CSF) biomarkers of patients on monotherapy with lopinavir/ritonavir. Design: The Monotherapy Switzerland/Thailand study (MOST) trial compared monotherapy with ritonavir-boosted lopinavir with continued therapy. The trial was prematurely stopped due to virological failure in six patients on monotherapy. It, thus, offers a unique opportunity to assess brain markers in the early stage of HIV virological escape. Methods: Sixty-five CSF samples (34 on continued therapy and 31 on monotherapy) from 49 HIV-positive patients enrolled in MOST. Using enzyme-linked immunosorbent assay, we determined the CSF concentration of S100B (astrocytosis), neopterin (inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-β 1–42 (Aβ), the latter three indicating neuronal damage. Controls were CSF samples of 29 HIV-negative patients with Alzheimer dementia. Results: In the CSF of monotherapy, concentrations of S100B and neopterin were significantly higher than in continued therapy (P = 0.006 and P = 0.013, respectively) and Alzheimer dementia patients (P < 0.0001 and P = 0.0005, respectively). In Alzheimer dementia, concentration of Aβ was lower than in monotherapy (P = 0.005) and continued therapy (P = 0.016) and concentrations of tTau were higher than in monotherapy (P = 0.019) and continued therapy (P = 0.001). There was no difference in pTau among the three groups. After removal of the 16 CSF with detectable viral load in the blood and/or CSF, only S100B remained significantly higher in monotherapy than in the two other groups. Conclusion: Despite full viral load-suppression in blood and CSF, antiretroviral monotherapy with lopinavir/ritonavir can raise CSF levels of S100B, suggesting astrocytic damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with advanced prostate cancer (PC) are usually treated with androgen withdrawal. While this therapy is initially effective, nearly all PCs become refractory to it. As hormone receptors play a crucial role in this process, we constructed a tissue microarray consisting of PC samples from 107 hormone-naïve (HN) and 101 castration-resistant (CR) PC patients and analyzed the androgen receptor (AR) gene copy number and the protein expression profiles of AR, Serin210-phosphorylated AR (pAR(210)), estrogen receptor (ER)β, ERα and the proliferation marker Ki67. The amplification of the AR gene was virtually restricted to CR PC and was significantly associated with increased AR protein expression (P<0.0001) and higher tumor cell proliferation (P=0.001). Strong AR expression was observed in a subgroup of HN PC patients with an adverse prognosis. In contrast, the absence of AR expression in CR PC was significantly associated with a poor overall survival. While pAR(210) was predominantly found in CR PC patients (P<0.0001), pAR(210) positivity was observed in a subgroup of HN PC patients with a poor survival (P<0.05). Epithelial ERα expression was restricted to CR PC cells (9%). ERβ protein expression was found in 38% of both HN and CR PCs, but was elevated in matched CR PC specimens. Similar to pAR(210), the presence of ERβ in HN patients was significantly associated with an adverse prognosis (P<0.005). Our results strongly suggest a major role for pAR(210) and ERβ in HN PC. The expression of these markers might be directly involved in CR tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most newly synthesized messenger RNAs possess a 5’ cap and a 3’ poly(A) tail. The process of poly(A) tail shortening, also termed deadenylation, is important for post-transcriptional gene regulation, because deadenylation not only leads to mRNA translational inhibition but also is the first step of major mRNA degradation. Translationally inhibited mRNAs can be stored and/or degraded in dynamic cytoplasmic foci termed mRNA processing bodies, or P bodies, which are conserved in eukaryotes. To shed new light on the mechanisms of P body formation and P body functions, I focused on the link between deadenylation factors and P bodies. I found that the two major deadenylation complexes, Pan3-Pan2 and Ccr4-Caf1, can both be enriched in P bodies. The deadenylase activity of the Ccr4-Caf1 complex is prerequisite for P body formation. Pan3, but not the deadenylase Pan2, is essential for P body formation. While the C-terminal domain of Pan3 is important for interaction with Pan2, Pan3 N-terminal domain is important for Pan3 to form cytoplasmic foci colocalizing with P bodies and to promote mRNA decay. Interestingly, Pan3 N-terminal domain may be phosphorylated to regulate Pan3 localization and functions. Aside from the functions of the two deadenylation complexes in P bodies, I also studied all reported human P body proteins as a whole using bioinformatics. This effort not only has generated a comprehensive picture of the functions of and interactions among human P body proteins, but also has predicted proteins that may regulate P body formation and/or functions. In summary, my study has established a direct link between mRNA deadenylation and P body formation and has also led to new hypotheses to guide future research on how P body dynamics are controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapy is a common and effective method to treat many forms of cancer. However, treatment of cancer with chemotherapy has severe side effects which often limit the doses of therapy administered. Because some cancer chemotherapeutics target proliferating cells and tissues, all dividing cells, whether normal or tumor, are affected. Cell culture studies have demonstrated that UCN-01 is able to reversibly and selectively arrest normal dividing cells; tumor cells lines do not undergo this temporary arrest. Following UCN-01 treatment, normal cells displayed a 50-fold increase in IC50 for camptothecin; tumor cells showed no such increased tolerance. We have examined the response of the proliferating tissues of the mouse to UCN- 01 treatment, using the small bowel epithelium as a model system. Our results indicate that UCN-01 treatment can cause a cell cycle arrest in the gut epithelium, beginning 24 hours following UCN-01 administration, with cell proliferation remaining suppressed for one week. Two weeks post-UCN-01 treatment the rate of proliferation returns to normal levels. 5-FU administered during this period demonstrates that UCN-01 is able to provide protection to normal cells of the mouse within a narrow window of efficacy, from three to five days post-UCN-01. UCN-01 pretreated mice displayed improved survival, weight status and blood markers following 5-FU compared to control mice, indicating that UCN-01 can protect normal dividing tissues. The mechanism by which UCN-01 arrests normal cells in vivo was also examined. We have demonstrated that UCN-01 treatment in mice causes an increase in the G1 phase cell cycle proteins cdk4 and cyclin D, as well as the inhibitor p27. Phosphorylated Rb was also elevated in the arrested cells. These results are a departure from cell culture studies, in which inhibition of G1 phase cyclin dependent kinases led to hyposphosphorylation of Rb. Future investigation will be required to understand the mechanism of UCN-01 action. This is important information, especially for identification of alternate compounds which could provide the protection afforded by UCN-01.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Squamous cell carcinoma of head and neck (SCCHN) is the tenth most common cancer in the world. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years. Therefore new targets for therapy are needed, and to this end we are studying signaling pathways activated by IL-6 which we have found stimulates cell migration and soft agar growth in SCCHN. Our data show that IL-6 increases TWIST expression in a transcription-independent mechanism in many SCCHN cell lines. Further investigation reveals TWIST can be phosphorylated upon IL-6 treatment. By computation prediction (http://scansite.mit.edu/motifscan_seq.phtml ), we found that TWIST has a putative phosphorylation site for casein kinase 2 (CK2) suggesting that this kinase could serve as a link between IL-6 stimulation and Twist stability. To test this hypothesis, we used a CK2 inhibitor and shRNA to CK2 and found that these interventions inhibited IL-6 stimulation of TWIST stability. In addition, mutation of the putative CK2 phosphorylation site (S18/S20A) in TWIST decreased the amount of phospho-ATP incorporated by TWIST in an in vitro kinase assay, and altered TWIST stability. In Boyd chamber migration assay and wound-healing assay, the CK2 inhibitor, DMAT, was found to decrease the motility of IL-6 stimulated SCCHN cells and over expression of either a wild-type or the hyperphosphorylated mimicking mutant S18/20D –Twist rather than the hypo-phosphorylated mimicking mutant S18/20A-Twist can promote SCCHN cell motility.To our knowledge, this is the first report to identify the importance of IL-6 stimulated CK2 phosphorylation of TWIST in SCCHN. As CK2 inhibitors are currently under phase I clinical trials, our findings indicate that CK2 may be a viable therapeutic target in SCCHN. Therefore, further pre-clinical studies of this inhibitor are underway.