859 resultados para pharmaceuticals in wastewater
Resumo:
Chronic infection with Pseudomonas aeruginosa is associated with poor outcomes in patients with cystic fibrosis (CF). It leads to a reduced quality of life, acceleration of the decline in lung function, and increased frequency and severity of pulmonary exacerbations. Tobramycin, administered by inhalation as a long-term therapy, decreases bacterial density in airways, reduces exacerbation frequency, and improves quality of life and lung function in patients with chronic P. aeruginosa infection. In the last decade, tobramycin inhalation has become an important contributor to CF treatment as a means to control chronic infection and as a first-line treatment for the eradication of early acquisition of P. aeruginosa. Recently, a dry powder inhalation (DPI) form of tobramycin has become available, which is more convenient for administration and has comparable efficacy to the tobramycin solution. This DPI, the Podhaler™ (Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA), requires less time for treatment delivery and is more portable than a nebulizer, and so is a welcome additional therapeutic option for many patients.
Resumo:
Background: Ivacaftor has shown a clinical benefit in patients with cystic fibrosis who have the G551D-CFTR mutation and reduced lung function. Lung clearance index (LCI) using multiple-breath washout might be an alternative to and more sensitive method than forced expiratory volume in 1 s (FEV1) to assess treatment response in the growing number of children and young adults with cystic fibrosis who have normal spirometry. The aim of the study was to assess the treatment effects of ivacaftor on LCI in patients with cystic fibrosis, a G551D-CFTR mutation, and an FEV1 >90% predicted. Methods: This phase 2, multicentre, placebo-controlled, double-blind 2×2 crossover study of ivacaftor treatment was conducted in patients with cystic fibrosis, at least one G551D-CFTR allele, and an FEV1 >90% predicted. Patients also had to have an LCI higher than 7·4 at screening, age of 6 years or older, and a weight higher than or equal to 15 kg. Eligible patients were randomly allocated to receive one of two treatment sequences (placebo first followed by ivacaftor 150 mg twice daily [sequence 1] or ivacaftor 150 mg twice daily first followed by placebo [sequence 2]) of 28 days' treatment in each period, with a 28-day washout between the two treatment periods. Randomisation (ratio 1:1) was done with block sizes of 4, and all site personnel including the investigator, the study monitor, and the Vertex study team were masked to treatment assignment. The primary outcome measure was change from baseline in LCI. The study is registered at ClinicalTrials.gov, NCT01262352. Findings: Between February and November, 2011, 21 patients were enrolled, of which 11 were assigned to the sequence 1 group, and 10 to the sequence 2 group. 20 of these patients received treatment and 17 completed the trial (eight in sequence 1 group and 9 in sequence 2 group). Treatment with ivacaftor led to significant improvements compared with placebo in LCI (difference between groups in the average of mean changes from baseline at days 15 and 29 was -2·16 [95% CI -2·88 to -1·44]; p<0·0001). Adverse events experienced by study participants were similar between treatment groups; at least one adverse event was reported by 15 (79%) of 19 patients who received placebo and 13 (72%) of 18 patients who received ivacaftor. No deaths occurred during study period. Interpretation: In patients with cystic fibrosis aged 6 years or older who have at least one G551D-CFTR allele, ivacaftor led to improvements in LCI. LCI might be a more sensitive alternative to FEV1 in detecting response to intervention in these patients with mild lung disease. Funding: Vertex Pharmaceuticals Incorporated. © 2013 Elsevier Ltd.
Resumo:
It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.
Resumo:
BACKGROUND: Bone metastases frequently cause skeletal events in patients with metastatic castration-resistant prostate cancer. Radium-223 dichloride (radium-223) selectively targets bone metastases with high-energy, short-range α-particles. We assessed the effect of radium-223 compared with placebo in patients with castration-resistant prostate cancer and bone metastases.
METHODS: In this phase 3, double-blind, randomised ALSYMPCA trial, we enrolled patients who had symptomatic castration-resistant prostate cancer with two or more bone metastases and no known visceral metastases, who were receiving best standard of care, and had previously either received or were unsuitable for docetaxel. Patients were stratified by previous docetaxel use, baseline total alkaline phosphatase level, and current bisphosphonate use, then randomly assigned (2:1) to receive either six intravenous injections of radium-223 (50 kBq/kg) or matching placebo; one injection was given every 4 weeks. Randomisation was done with an interactive voice response system, taking into account trial stratification factors. Participants and investigators were masked to treatment assignment. The primary endpoint was overall survival, which has been reported previously. Here we report on time to first symptomatic skeletal event, defined as the use of external beam radiation to relieve bone pain, or occurrence of a new symptomatic pathological fracture (vertebral or non-verterbal), or occurence of spinal cord compression, or tumour-related orthopeadic surgical intervention. All events were required to be clinically apparent and were not assessed by periodic radiological review. Statistical analyses of symptomatic skeletal events were based on the intention-to-treat population. The study has been completed and is registered with ClinicalTrials.gov, number NCT00699751.
FINDINGS: Between June 12, 2008, and Feb 1, 2011, 921 patients were enrolled, of whom 614 (67%) were randomly assigned to receive radium-223 and 307 (33%) placebo. Symptomatic skeletal events occurred in 202 (33%) of 614 patients in the radium-223 group and 116 (38%) of 307 patients in the placebo group. Time to first symptomatic skeletal event was longer with radium-223 than with placebo (median 15·6 months [95% CI 13·5-18·0] vs 9·8 months [7·3-23·7]; hazard ratio [HR]=0·66, 95% CI 0·52-0·83; p=0·00037). The risks of external beam radiation therapy for bone pain (HR 0·67, 95% CI 0·53-0·85) and spinal cord compression (HR=0·52, 95% CI 0·29-0·93) were reduced with radium-233 compared with placebo. Radium-223 treatment did not seem to significantly reduce the risk of symptomatic pathological bone fracture (HR 0·62, 95% CI 0·35-1·09), or the need for tumour-related orthopaedic surgical intervention (HR 0·72, 95% CI 0·28-1·82).
INTERPRETATION: Radium-223 should be considered as a treatment option for patients with castration-resistant prostate cancer and symptomatic bone metastases.
FUNDING: Algeta and Bayer HealthCare Pharmaceuticals.
Resumo:
Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.
Resumo:
While personalised cancer medicine holds great promise, targeting therapies to the biological characteristics of patients is limited by the number of validated biomarkers currently available. The implementation of biomarkers has undergone many challenges with few biomarkers reaching cancer patients in the clinic. There have been many biomarkers that have been published and claimed to be therapeutically useful, but few become part of the clinical decision-making process due to technical, validation and market access issues. To reduce this attrition rate, there is a significant need for policy makers and reimbursement agencies to define specific evidence requirements for the introduction of biomarkers into clinical practice. Once these requirements are more clearly defined, in an analogous manner to pharmaceuticals, researchers and diagnostic companies can better focus their biomarker research and development on meeting these specific requirements, which should lead to the more rapid introduction of new molecular oncology tests for patient benefit.
Resumo:
We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2%) within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.
Resumo:
Natural mineral-water interface reactions drive ecosystem/global fluoride (F−) cycling. These small-scale processes prove challenging to monitoring due to mobilization being highly localized and variable; influenced by changing climate, hydrology, dissolution chemistries and pedogenosis. These release events could be captured in situ by the passive sampling technique, diffusive gradients in thin-films (DGT), providing a cost-effective and time-integrated measurement of F− mobilization. However, attempts to develop the method for F− have been unsuccessful due to the very restrictive operational ranges that most F−-absorbents function within. A new hybrid-DGT technique for F− quantification containing a three-phase fine particle composite (Fesingle bondAlsingle bondCe, FAC) adsorbent was developed and evaluated. Sampler response was validated in laboratory and field deployments, passing solution chemistry QC within ionic strength and pH ranges of 0–200 mmol L−1 and 4.3–9.1, respectively, and exhibiting high sorption capacities (98 ± 8 μg cm−2). FAC-DGT measurements adequately predicted up to weeklong averaged in situ F− fluvial fluxes in a freshwater river and F− concentrations in a wastewater treatment flume determined by high frequency active sampling. While, millimetre-scale diffusive fluxes across the sediment-water interface were modeled for three contrasting lake bed sediments from a F−-enriched lake using the new FAC-DGT platform.
Resumo:
The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 ppb.
Resumo:
The introduction of chemicals into the environment by human activities may represent a serious risk to environmental and human health. Environmental risk assessment requires the use of efficient and sensitive tools to determine the impact of contaminants on the ecosystems. The use of zebrafish for the toxicity assessment of pharmaceuticals, drugs, and pollutants, is becoming well accepted due to zebrafish unique advantages for the screening of compounds for hazard identification. The aim of the present work is to apply toxicogenomic approaches to identify novel biomarkers and uncovered potential modes of action of classic and emergent contaminants able to disrupt endocrine systems, such as the Retinoic Acid Receptor, Retinoid X Receptor and the Aryl Hydrocarbon Receptor. This study relies on different nuclear and cytosolic protein receptors and other conditional (ligand- or stress- activated) transcriptional factors that are intimately involved in the regulation of defensome genes and in mechanisms of chemical toxicity. The transcriptomic effects of organic compounds, endogenous compounds, and nanoparticles were analysed during the early stages of zebrafish development. Studying the gene expression profiles of exposed and unexposed organisms to pollutants using microarrays allowed the identification of specific gene markers and to establish a "genetic code" for the tested compounds. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. Even at low toxicant concentrations, the observed changes in transcript levels were robust for some target genes. Microarray responses of selected genes were further complemented by the real time quantitative polymerase chain reaction (qRT-PCR) methodology. The combination of bio-informatic, toxicological analyses of differential gene expression profiles, and biochemical and phenotypic responses across the treatments allowed the identification of uncovered potential mechanisms of action. In addition, this work provides an integrated set of tools that can be used to aid management-decision making by improving the predictive capability to measure environmental stress of contaminants in freshwater ecosystems. This study also illustrates the potential of zebrafish embryos for the systematic, large-scale analysis of chemical effects on developing vertebrates.
Resumo:
Endocrine disruptors and pharmaceuticals are considered to be concerning environmental contaminants. During the last two decades, studies dealing with the occurrence and fate of these emerging contaminants in the aquatic environment have raised attention and its number is constantly increasing. The presence of these contaminants in the environment is particularly important since they are known to induce adverse effects in the ecosystems even at extremely low concentrations. Estrogens and antibiotics, in particular, are identified as capable of induce endocrine disruption and contribute for the appearance of multi-resistant bacteria, respectively. A better assessment and understanding of the real impact of these contaminants in the aquatic environment implies the evaluation of their occurrence and fate, which is the main aim of this Thesis. Two estrogens (17-estradiol and 17-ethinylestradiol) and an antibiotic (sulfamethoxazole) were the contaminants under study and their occurrence in surface and waste waters was assessed by the implementation of enzyme linked immunosorbent assays (ELISAs). The assays were optimized in order to accomplish two important aspects: to analyze complex water samples, giving special attention to matrix effects, and to increase the sensitivity. Since the levels of these contaminants in the environment are extremely low, a pre-concentration methodology was also object of study in this Thesis. Dispersive liquid-liquid microextraction (DLLME) was developed for the preconcentration of E2 and EE2, subsequently quantified by either highperformance liquid chromatography (HPLC) and the previously optimized ELISAs. Moreover, the use of anthropogenic markers, i.e. indicators of human presence or activity, has been discussed as a tool to track the origin and type of contamination. An ELISA for the quantification of caffeine, as an anthropogenic marker, was also developed in order to assess the occurrence of human domestic pollution in Portuguese surface waters. Finally, photodegradation is considered to be one of the most important pathways contributing for the mitigation of pollutants’ presence in the aquatic environment. Both direct and indirect photodegradation of E2 and EE2 were evaluated. Since the presence of humic substances (HS) is known to have a noticeable influence on the photodegradation of pollutants and in order to mimic the real aquatic environment, special attention was given to the influence of the presence and concentration of different fractions of HS on the photodegradation of both hormones.
Resumo:
Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.
Resumo:
Significant improvements in human health have been achieved through the increased consumption of pharmaceutical drugs. However, most of these active pharmaceutical ingredients (APIs) are excreted by mammals (in a metabolized or unchanged form) into the environment. The presence of residual amounts of these contaminants was already confirmed in aqueous streams since treatment processes either wastewater treatment plants (WWTPs) or sewage treatment plants (STPs) are not specifically designed for this type of pollutants. Although they are present in aqueous effluents, they are usually at very low concentrations, most of the times below the detection limits of analytical equipment used for their quantification, hindering their accurate monitoring. Therefore, the development of a pre-concentration technique in order to accurately quantify and monitor these components in aqueous streams is of major relevance. This work addresses the use of liquid-liquid equilibria, applying ionic liquids (ILs), for the extraction and concentration of non-steroidal anti-inflammatory drugs (NSAIDs) from aqueous effluents. Particularly, aqueous biphasic systems (ABSs) composed of ILs and potassium citrate were investigated in the extraction and concentration of naproxen, diclofenac and ketoprofen from aqueous media. Both the extraction efficiency and concentration factor achievable by these systems was determined and evaluated. Within the best conditions, extraction efficiencies of 99.4% and concentration factors up to 13 times were obtained.
Resumo:
Photodegradation is considered to be one of the most important processes of elimination of pharmaceutical drugs from natural water matrices. The high consumption and discharge of these substances, in particular antidepressants, to the aquatic environment supports the need to study degradation processes. This dissertation aimed at studying the direct and indirect photodegradation of sertraline, an antidepressant known for its persistence in the environment, and the evaluation of the influence of environmentally relevant factors in its photodegradation. The photodegradation experiments were developed under simulated solar light and the irradiation times converted to summer sunny days (SSD), an equivalent time in natural environmental conditions. The direct photodegradation was evaluated in solutions of sertraline prepared in ultrapure water and the indirect photodegradation was studied through the addition of photosensitizers (humic substances, Fe(III), nitrates and oxygen). Further irradiation studies were perfomed in aqueous samples collected from two wastewater treatment plants, Vouga river and Ria de Aveiro. The samples were chemically characterized (dissolved organic carbon, nitrates and nitrites and iron determination and UV/Vis spectroscopy). The quantification of sertraline was done by HPLC-UV and photoproducts from direct photodegradation were identified by electrospray mass spectrometry. An observed direct photodegradation rate of sertraline of 0.0062 h-1 was determined, corresponding to a half-life time of 111 h (equivalent to 29 SSD). A significant influence of photosensitizers was observed, the best results being achieved in irradiations of sertraline with humic acids, obtaining a half-life time of 12 h. This was attributed to the hydrophobicity of this substance and higher absortivity in the UV/Vis wavelength, which promote processes of indirect photodegradation. The degradation of sertraline in natural samples was also enhanced comparatively to the direct photodegradation, achieving half-life times between 10 and 25h; the best results were achieved in samples from the primary treatment of a wastewater treatment plant and Ria de Aveiro, with half-life times of 10 and 16 h, respectively. A total of six photoproducts formed during the direct photodegradation of sertraline were identified, three of which were not yet identified in the literature. The main factors contributing to the degradation of sertraline were analysed but this was not fully accomplished, requiring further studies of the composition of the natural matrices and the combined influence of distinct photosensitizers during the irradiation. Nevertheless, it was concluded that the photodegradation of sertraline is greatly influenced by indirect photodegradation processes, promoted by the presence of photosensitizers.
Resumo:
Thesis (Ph.D.)--University of Washington, 2015