912 resultados para pacs: neural computing technologies
Resumo:
Choi et al. recently proposed an efficient RFID authentication protocol for a ubiquitous computing environment, OHLCAP(One-Way Hash based Low-Cost Authentication Protocol). However, this paper reveals that the protocol has several security weaknesses : 1) traceability based on the leakage of counter information, 2) vulnerability to an impersonation attack by maliciously updating a random number, and 3) traceability based on a physically-attacked tag. Finally, a security enhanced group-based authentication protocol is presented.
Resumo:
The performing arts have traditionally made limited use of and showed limited acceptance of computing technology. There are cognitive, physical, environmental, and social influences on the use of computers in performing arts. This paper will examine those influences on the practice of computers in the performing arts and their implications for education in those areas. These implications for the learning environment include infrastructure, interface design, industrial design, and software functionality. Although many of the issues raised in this paper are common to all visual and performing arts, there are significant differences between them which require abstraction of the concepts presented in this paper beyond the more practical focus intended. In particular there are differences in the ways humans are involved in the presentation of a work, and the transitory verses static nature of time in art products.
Resumo:
While using unmanned systems in combat is not new, what will be new in the foreseeable future is how such systems are used and integrated in the civilian space. The potential use of Unmanned Aerial Vehicles in civil and commercial applications is becoming a fact, and is receiving considerable attention by industry and the research community. The majority of Unmanned Aerial Vehicles performing civilian tasks are restricted to flying only in segregated space, and not within the National Airspace. The areas that UAVs are restricted to flying in are typically not above populated areas, which in turn are the areas most useful for civilian applications. The reasoning behind the current restrictions is mainly due to the fact that current UAV technologies are not able to demonstrate an Equivalent Level of Safety to manned aircraft, particularly in the case of an engine failure which would require an emergency or forced landing. This chapter will preset and guide the reader through a number of developments that would facilitate the integration of UAVs into the National Airspace. Algorithms for UAV Sense-and-Avoid and Force Landings are recognized as two major enabling technologies that will allow the integration of UAVs in the civilian airspace. The following sections will describe some of the techniques that are currently being tested at the Australian Research Centre for Aerospace Automation (ARCAA), which places emphasis on the detection of candidate landing sites using computer vision, the planning of the descent path trajectory for the UAV, and the decision making process behind the selection of the final landing site.
Resumo:
The increasing ubiquity of digital technology, internet services and location-aware applications in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdisciplinary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper introduces urban informatics as a transdisciplinary practice across people, place and technology that can aid local governments, urban designers and planners in creating responsive and inclusive urban spaces and nurturing healthy cities. Three challenges are being discussed. First, people, and the challenge of creativity explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. Second, technology, and the challenge of innovation examines how urban informatics can be applied to support user-led innovation with a view to promote entrepreneurial ideas and creative industries. Third, place, and the challenge of engagement discusses the potential to establish places within cities that are dedicated to place-based applications of urban informatics with a view to deliver community and civic engagement strategies.
Resumo:
Bioinformatics is dominated by online databases and sophisticated web-accessible tools. As such, it is ideally placed to benefit from the rapid, purpose specific combination of services achievable via web mashups. The recent introduction of a number of sophisticated frameworks has greatly simplified the mashup creation process, making them accessible to scientists with limited programming expertise. In this paper we investigate the feasibility of mashups as a new approach to bioinformatic experimentation, focusing on an exploratory niche between interactive web usage and robust workflows, and attempting to identify the range of computations for which mashups may be employed. While we treat each of the major frameworks, we illustrate the ideas with a series of examples developed under the Popfly framework
Resumo:
Given the recent emergence of the smart grid and smart grid related technologies, their security is a prime concern. Intrusion detection provides a second line of defense. However, conventional intrusion detection systems (IDSs) are unable to adequately address the unique requirements of the smart grid. This paper presents a gap analysis of contemporary IDSs from a smart grid perspective. This paper highlights the lack of adequate intrusion detection within the smart grid and discusses the limitations of current IDSs approaches. The gap analysis identifies current IDSs as being unsuited to smart grid application without significant changes to address smart grid specific requirements.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics
Resumo:
Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.
Resumo:
In just under 3 months worldwide sales of Apple's iPad tablet device stood at over 3 million units sold. The iPad device, along with rival products signify a shift in the way in which print and other media products are purchased and consumed by users. While facing initial skepticism about the uptake of the device numerous industries have been quick to adapt the device to their specific needs. Based around a newly developed six point typology of “post PC” device utility this project undertook a significant review of publicly available material to identify worldwide trends in iPad adoption and use within the tertiary sector.
Resumo:
The uniformization method (also known as randomization) is a numerically stable algorithm for computing transient distributions of a continuous time Markov chain. When the solution is needed after a long run or when the convergence is slow, the uniformization method involves a large number of matrix-vector products. Despite this, the method remains very popular due to its ease of implementation and its reliability in many practical circumstances. Because calculating the matrix-vector product is the most time-consuming part of the method, overall efficiency in solving large-scale problems can be significantly enhanced if the matrix-vector product is made more economical. In this paper, we incorporate a new relaxation strategy into the uniformization method to compute the matrix-vector products only approximately. We analyze the error introduced by these inexact matrix-vector products and discuss strategies for refining the accuracy of the relaxation while reducing the execution cost. Numerical experiments drawn from computer systems and biological systems are given to show that significant computational savings are achieved in practical applications.
Resumo:
In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.