976 resultados para pacs: document processing techniques
Resumo:
La interacció home-màquina per mitjà de la veu cobreix moltes àrees d’investigació. Es destaquen entre altres, el reconeixement de la parla, la síntesis i identificació de discurs, la verificació i identificació de locutor i l’activació per veu (ordres) de sistemes robòtics. Reconèixer la parla és natural i simple per a les persones, però és un treball complex per a les màquines, pel qual existeixen diverses metodologies i tècniques, entre elles les Xarxes Neuronals. L’objectiu d’aquest treball és desenvolupar una eina en Matlab per al reconeixement i identificació de paraules pronunciades per un locutor, entre un conjunt de paraules possibles, i amb una bona fiabilitat dins d’uns marges preestablerts. El sistema és independent del locutor que pronuncia la paraula, és a dir, aquest locutor no haurà intervingut en el procés d’entrenament del sistema. S’ha dissenyat una interfície que permet l’adquisició del senyal de veu i el seu processament mitjançant xarxes neuronals i altres tècniques. Adaptant una part de control al sistema, es podria utilitzar per donar ordres a un robot com l’Alfa6Uvic o qualsevol altre dispositiu.
Resumo:
The ongoing development of the digital media has brought a new set of challenges with it. As images containing more than three wavelength bands, often called spectral images, are becoming a more integral part of everyday life, problems in the quality of the RGB reproduction from the spectral images have turned into an important area of research. The notion of image quality is often thought to comprise two distinctive areas – image quality itself and image fidelity, both dealing with similar questions, image quality being the degree of excellence of the image, and image fidelity the measure of the match of the image under study to the original. In this thesis, both image fidelity and image quality are considered, with an emphasis on the influence of color and spectral image features on both. There are very few works dedicated to the quality and fidelity of spectral images. Several novel image fidelity measures were developed in this study, which include kernel similarity measures and 3D-SSIM (structural similarity index). The kernel measures incorporate the polynomial, Gaussian radial basis function (RBF) and sigmoid kernels. The 3D-SSIM is an extension of a traditional gray-scale SSIM measure developed to incorporate spectral data. The novel image quality model presented in this study is based on the assumption that the statistical parameters of the spectra of an image influence the overall appearance. The spectral image quality model comprises three parameters of quality: colorfulness, vividness and naturalness. The quality prediction is done by modeling the preference function expressed in JNDs (just noticeable difference). Both image fidelity measures and the image quality model have proven to be effective in the respective experiments.
Resumo:
Aquest projecte treballa sobre la possibilitat d'aplicar tècniques d'enregistrament binaural en animals, en concret, en una cabra domèstica. Mitjançant uns micròfons col·locats dins les seves orelles i una petita càmera de vídeo muntada sobre el seu cap, s'obté un material audiovisual que permet fer-se una idea aproximada de com és la seva percepció del món. En base a un estudi de cognició comparada, es pretén trobar maneres de transformar els enregistraments obtinguts per tal d'adaptar el marc psicoacústic humà al de l'animal. L'objectiu és que una persona pugui sentir com ho fa un animal, encara que sigui d'una manera aproximada. Els materials obtinguts al llarg dels enregistraments són el punt de partida per a la construcció de paisatges sonors i peces audiovisuals diverses. Així doncs, el treball s'inicia amb el disseny i construcció d'un micròfon binaural, continua amb enregistraments de camp en animals i acaba amb l'edició, el processat i la composició dels paisatges sonors finals.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.
Resumo:
Abstract In this study the effects of zein film coating along with benzoic acid on the quality of sliced pumpkin samples, which were packaged with different techniques were investigated. The samples were allocated into different groups and were treated with different processes. Following processing, the samples were stored at +4 °C for twenty days. Physicochemical and microbiological analyses were carried out on the samples once every five days during the storage period. According to color analysis, the L* value was observed to have significantly decreased in the processed and packaged samples in comparison with the control group. Besides, a* and b* values increased in all groups. It was determined that zein film alone did not exhibit the expected effectiveness against moisture loss in the samples. According to the results of microbiological analysis, a final decrease at approximately 1.00 log level was determined in total count of mesophilic aerobic bacteria (TMAB) in the group which was vacuum packaged in PVDC with zein coating when compared with the initial TMAB. Furthermore, no molding occurred in zein-coated group on the last day of the storage period, while massive mold growth was noted in the group which was packaged without any pretreatment procedure.
Resumo:
The increased awareness and evolved consumer habits have set more demanding standards for the quality and safety control of food products. The production of foodstuffs which fulfill these standards can be hampered by different low-molecular weight contaminants. Such compounds can consist of, for example residues of antibiotics in animal use or mycotoxins. The extremely small size of the compounds has hindered the development of analytical methods suitable for routine use, and the methods currently in use require expensive instrumentation and qualified personnel to operate them. There is a need for new, cost-efficient and simple assay concepts which can be used for field testing and are capable of processing large sample quantities rapidly. Immunoassays have been considered as the golden standard for such rapid on-site screening methods. The introduction of directed antibody engineering and in vitro display technologies has facilitated the development of novel antibody based methods for the detection of low-molecular weight food contaminants. The primary aim of this study was to generate and engineer antibodies against low-molecular weight compounds found in various foodstuffs. The three antigen groups selected as targets of antibody development cause food safety and quality defects in wide range of products: 1) fluoroquinolones: a family of synthetic broad-spectrum antibacterial drugs used to treat wide range of human and animal infections, 2) deoxynivalenol: type B trichothecene mycotoxin, a widely recognized problem for crops and animal feeds globally, and 3) skatole, or 3-methyindole is one of the two compounds responsible for boar taint, found in the meat of monogastric animals. This study describes the generation and engineering of antibodies with versatile binding properties against low-molecular weight food contaminants, and the consecutive development of immunoassays for the detection of the respective compounds.
Resumo:
Leisure-based therapy is a potentially effective approach to supporting survivors of trauma in their healing. The purpose ofthis qualitative case study was to describe the recreation therapist's facilitation techniques of Leisure Connections, a unique leisurebased psycho-educational group for survivors of trauma, and explore how the facilitation was experienced by participants. Qualitative case study design, following the methods of Yin (1994) was used. One two week, three session Leisure Connections group was observed. Six participants completed the Group· Therapy Alliance Scale (pinsof & Catherall, 1986) and reflection cards. In-depth, semi-structured interviews were conducted with the recreation therapist and four participants. Six themes emerged describing group leader interventions, recreation therapist's actions, recreation therapist's preparation and reflections, group members' experience of a therapeutic alliance, group cohesion, and prior influences and assumptions. Therapeutic alliance and group cohesion were influenced by the recreation therapist's group leader interventions (drawing out, processing, protecting) and actions. The context of the group within a therapeutic community milieu was an important influence.
Resumo:
Il est connu que les problèmes d'ambiguïté de la langue ont un effet néfaste sur les résultats des systèmes de Recherche d'Information (RI). Toutefois, les efforts de recherche visant à intégrer des techniques de Désambiguisation de Sens (DS) à la RI n'ont pas porté fruit. La plupart des études sur le sujet obtiennent effectivement des résultats négatifs ou peu convaincants. De plus, des investigations basées sur l'ajout d'ambiguïté artificielle concluent qu'il faudrait une très haute précision de désambiguation pour arriver à un effet positif. Ce mémoire vise à développer de nouvelles approches plus performantes et efficaces, se concentrant sur l'utilisation de statistiques de cooccurrence afin de construire des modèles de contexte. Ces modèles pourront ensuite servir à effectuer une discrimination de sens entre une requête et les documents d'une collection. Dans ce mémoire à deux parties, nous ferons tout d'abord une investigation de la force de la relation entre un mot et les mots présents dans son contexte, proposant une méthode d'apprentissage du poids d'un mot de contexte en fonction de sa distance du mot modélisé dans le document. Cette méthode repose sur l'idée que des modèles de contextes faits à partir d'échantillons aléatoires de mots en contexte devraient être similaires. Des expériences en anglais et en japonais montrent que la force de relation en fonction de la distance suit généralement une loi de puissance négative. Les poids résultant des expériences sont ensuite utilisés dans la construction de systèmes de DS Bayes Naïfs. Des évaluations de ces systèmes sur les données de l'atelier Semeval en anglais pour la tâche Semeval-2007 English Lexical Sample, puis en japonais pour la tâche Semeval-2010 Japanese WSD, montrent que les systèmes ont des résultats comparables à l'état de l'art, bien qu'ils soient bien plus légers, et ne dépendent pas d'outils ou de ressources linguistiques. La deuxième partie de ce mémoire vise à adapter les méthodes développées à des applications de Recherche d'Information. Ces applications ont la difficulté additionnelle de ne pas pouvoir dépendre de données créées manuellement. Nous proposons donc des modèles de contextes à variables latentes basés sur l'Allocation Dirichlet Latente (LDA). Ceux-ci seront combinés à la méthodes de vraisemblance de requête par modèles de langue. En évaluant le système résultant sur trois collections de la conférence TREC (Text REtrieval Conference), nous observons une amélioration proportionnelle moyenne de 12% du MAP et 23% du GMAP. Les gains se font surtout sur les requêtes difficiles, augmentant la stabilité des résultats. Ces expériences seraient la première application positive de techniques de DS sur des tâches de RI standard.
Resumo:
L’entérotoxine B staphylococcique (SEB) est une toxine entérique hautement résistante à la chaleur et est responsable de plus de 50 % des cas d’intoxication d’origine alimentaire par une entérotoxine. L’objectif principal de ce projet de maîtrise est de développer et valider une méthode basée sur des nouvelles stratégies analytiques permettant la détection et la quantification de SEB dans les matrices alimentaires. Une carte de peptides tryptiques a été produite et 3 peptides tryptiques spécifiques ont été sélectionnés pour servir de peptides témoins à partir des 9 fragments protéolytiques identifiés (couverture de 35 % de la séquence). L’anhydride acétique et la forme deutérée furent utilisés afin de synthétiser des peptides standards marqués avec un isotope léger et lourd. La combinaison de mélanges des deux isotopes à des concentrations molaires différentes fut utilisée afin d’établir la linéarité et les résultats ont démontré que les mesures faites par dilution isotopique combinée au CL-SM/SM respectaient les critères généralement reconnus d’épreuves biologiques avec des valeurs de pente près de 1, des valeurs de R2 supérieure à 0,98 et des coefficients de variation (CV%) inférieurs à 8 %. La précision et l’exactitude de la méthode ont été évaluées à l’aide d’échantillons d’homogénat de viande de poulet dans lesquels SEB a été introduite. SEB a été enrichie à 0,2, 1 et 2 pmol/g. Les résultats analytiques révèlent que la méthode procure une plage d’exactitude de 84,9 à 91,1 %. Dans l’ensemble, les résultats présentés dans ce mémoire démontrent que les méthodes protéomiques peuvent être utilisées efficacement pour détecter et quantifier SEB dans les matrices alimentaires. Mots clés : spectrométrie de masse; marquage isotopique; protéomique quantitative; entérotoxines
Resumo:
Les stimuli naturels projetés sur nos rétines nous fournissent de l’information visuelle riche. Cette information varie le long de propriétés de « bas niveau » telles que la luminance, le contraste, et les fréquences spatiales. Alors qu’une partie de cette information atteint notre conscience, une autre partie est traitée dans le cerveau sans que nous en soyons conscients. Les propriétés de l’information influençant l’activité cérébrale et le comportement de manière consciente versus non-consciente demeurent toutefois peu connues. Cette question a été examinée dans les deux derniers articles de la présente thèse, en exploitant les techniques psychophysiques développées dans les deux premiers articles. Le premier article présente la boîte à outils SHINE (spectrum, histogram, and intensity normalization and equalization), développée afin de permettre le contrôle des propriétés de bas niveau de l'image dans MATLAB. Le deuxième article décrit et valide la technique dite des bulles fréquentielles, qui a été utilisée tout au long des études de cette thèse pour révéler les fréquences spatiales utilisées dans diverses tâches de perception des visages. Cette technique offre les avantages d’une haute résolution au niveau des fréquences spatiales ainsi que d’un faible biais expérimental. Le troisième et le quatrième article portent sur le traitement des fréquences spatiales en fonction de la conscience. Dans le premier cas, la méthode des bulles fréquentielles a été utilisée avec l'amorçage par répétition masquée dans le but d’identifier les fréquences spatiales corrélées avec les réponses comportementales des observateurs lors de la perception du genre de visages présentés de façon consciente versus non-consciente. Les résultats montrent que les mêmes fréquences spatiales influencent de façon significative les temps de réponse dans les deux conditions de conscience, mais dans des sens opposés. Dans le dernier article, la méthode des bulles fréquentielles a été combinée à des enregistrements intracrâniens et au Continuous Flash Suppression (Tsuchiya & Koch, 2005), dans le but de cartographier les fréquences spatiales qui modulent l'activation de structures spécifiques du cerveau (l'insula et l'amygdale) lors de la perception consciente versus non-consciente des expressions faciales émotionnelles. Dans les deux régions, les résultats montrent que la perception non-consciente s'effectue plus rapidement et s’appuie davantage sur les basses fréquences spatiales que la perception consciente. La contribution de cette thèse est donc double. D’une part, des contributions méthodologiques à la recherche en perception visuelle sont apportées par l'introduction de la boîte à outils SHINE ainsi que de la technique des bulles fréquentielles. D’autre part, des indications sur les « corrélats de la conscience » sont fournies à l’aide de deux approches différentes.
Resumo:
Analog-to digital Converters (ADC) have an important impact on the overall performance of signal processing system. This research is to explore efficient techniques for the design of sigma-delta ADC,specially for multi-standard wireless tranceivers. In particular, the aim is to develop novel models and algorithms to address this problem and to implement software tools which are avle to assist the designer's decisions in the system-level exploration phase. To this end, this thesis presents a framework of techniques to design sigma-delta analog to digital converters.A2-2-2 reconfigurable sigma-delta modulator is proposed which can meet the design specifications of the three wireless communication standards namely GSM,WCDMA and WLAN. A sigma-delta modulator design tool is developed using the Graphical User Interface Development Environment (GUIDE) In MATLAB.Genetic Algorithm(GA) based search method is introduced to find the optimum value of the scaling coefficients and to maximize the dynamic range in a sigma-delta modulator.
Resumo:
Nonlinear optical processes in organic compounds have attracted considerable interest in the field of science and technology because of their compelling technological promises in fields of optical communication,computing,switching and signal processing.As a result of the synthesis of novel organic compounds with varying degree of nonlinear optical strength, many practical devices based on these are getting realised giving new theoretical insights into the nonolinear optical behaviour of materials.Organic compounds like phthalocyanines and porphyrins have evoked great deal of interest in the field of photonic technology.The present thesis describes the results obtained from the investigations carried out on the nonlinear optical properties of certain organo-metallic compounds using Z-Scan and DFWM techniques.
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.