972 resultados para nonlinear optimization
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modern database systems incorporate a query optimizer to identify the most efficient "query execution plan" for executing the declarative SQL queries submitted by users. A dynamic-programming-based approach is used to exhaustively enumerate the combinatorially large search space of plan alternatives and, using a cost model, to identify the optimal choice. While dynamic programming (DP) works very well for moderately complex queries with up to around a dozen base relations, it usually fails to scale beyond this stage due to its inherent exponential space and time complexity. Therefore, DP becomes practically infeasible for complex queries with a large number of base relations, such as those found in current decision-support and enterprise management applications. To address the above problem, a variety of approaches have been proposed in the literature. Some completely jettison the DP approach and resort to alternative techniques such as randomized algorithms, whereas others have retained DP by using heuristics to prune the search space to computationally manageable levels. In the latter class, a well-known strategy is "iterative dynamic programming" (IDP) wherein DP is employed bottom-up until it hits its feasibility limit, and then iteratively restarted with a significantly reduced subset of the execution plans currently under consideration. The experimental evaluation of IDP indicated that by appropriate choice of algorithmic parameters, it was possible to almost always obtain "good" (within a factor of twice of the optimal) plans, and in the few remaining cases, mostly "acceptable" (within an order of magnitude of the optimal) plans, and rarely, a "bad" plan. While IDP is certainly an innovative and powerful approach, we have found that there are a variety of common query frameworks wherein it can fail to consistently produce good plans, let alone the optimal choice. This is especially so when star or clique components are present, increasing the complexity of th- e join graphs. Worse, this shortcoming is exacerbated when the number of relations participating in the query is scaled upwards.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
Over the past two decades, the selection, optimization, and compensation (SOC) model has been applied in the work context to investigate antecedents and outcomes of employees' use of action regulation strategies. We systematically review, meta-analyze, and critically discuss the literature on SOC strategy use at work and outline directions for future research and practice. The systematic review illustrates the breadth of constructs that have been studied in relation to SOC strategy use, and that SOC strategy use can mediate and moderate relationships of person and contextual antecedents with work outcomes. Results of the meta-analysis show that SOC strategy use is positively related to age (rc = .04), job autonomy (rc = .17), self-reported job performance (rc = .23), non-self-reported job performance (rc = .21), job satisfaction (rc = .25), and job engagement (rc = .38), whereas SOC strategy use is not significantly related to job tenure, job demands, and job strain. Overall, our findings underline the importance of the SOC model for the work context, and they also suggest that its measurement and reporting standards need to be improved to become a reliable guide for future research and organizational practice.
Resumo:
This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai-Wu-Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
A general asymptotic method based on the work of Krylov-Bogoliubov is developed to obtain the response of nonlinear over damped systems. A second-order system with both roots real is treated first and the method is then extended to higher-order systems. Two illustrative examples show good agreement with results obtained by numerical integration.
Resumo:
A simple new series, using an expansion of the velocity profile in parabolic cylinder functions, has been developed to describe the nonlinear evolution of a steady, laminar, incompressible wake from a given arbitrary initial profile. The first term in this series is itself found to provide a very satisfactory prediction of the decay of the maximum velocity defect in the wake behind a flat plate or aft of the recirculation zone behind a symmetric blunt body. A detailed analysis, including higher order terms, has been made of the flat plate wake with a Blasius profile at the trailing edge. The same method yields, as a special case, complete results for the development of linearized wakes with arbitrary initial profile under the influence of arbitrary pressure gradients. Finally, for purposes of comparison, a simple approximate solution is obtained using momentum integral methods, and found to predict satisfactorily the decay of the maximum velocity defect. © 1970 Wolters-Noordhoff Publishing.
Resumo:
Some new concepts characterizing the response of nonlinear systems are developed. These new concepts are denoted by the terms, the transient system equivalent, the response vector, and the space-phase components. This third concept is analyzed in comparison with the well-known technique of symmetrical components. The performance of a multiplicative feedback control system is represented by a nonlinear integro-differential equation; its solution is obtained by the principle of variation of parameters. The system response is treated as a vector and is resolved into its space-phase components. The individual effects of these components on the performance of the system are discussed. The suitability of the technique for the transient analysis of higher order nonlinear control systems is discussed.
Resumo:
The scope of application of Laplace transforms presently limited to the study of linear partial differential equations, is extended to the nonlinear domain by this study. This has been achieved by modifying the definition of D transforms, put forth recently for the study of classes of nonlinear lumped parameter systems. The appropriate properties of the new D transforms are presented to bring out their applicability in the analysis of nonlinear distributed parameter systems.