896 resultados para nitrogen-doped
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.
Resumo:
Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.
Resumo:
The exposure of fish to air is normally expected to interfere with the nitrogen excretion process. Hoplias malabaricus and Hoplerythrinus unitaeniatus, two teleost species, display distinct behaviors in response to decreases in natural reservoir water levels, although they may employ similar biochemical strategies. To investigate this point, plasma levels of ammonia, urea, uric acid, and the two urea cycle enzymes, ornithine carbamoyl transferase (OCT) and arginase (ARG), as well as glutamine synthetase (GS) were determined for both species after exposure to air. Plasma ammonia increased gradually during exposure to air, but only H. malabaricus showed increased concentrations of urea. Plasma uric acid remained very low in both fish. Enzymatic activities (mean ± SD, µmol min-1 g protein-1) of H. malabaricus showed significant increases (P<0.05, N = 6) in OCT from 0.84 ± 0.05 to 1.42 ± 0.03, in ARG from 8.07 ± 0.47 to 9.97 ± 0.53 and in GS from 1.15 ± 0.03 to 2.39 ± 0.04. The OCT and ARG enzymes remained constant in H. unitaeniatus (N = 6), but GS increased from 1.49 ± 0.02 to 2.06 ± 0.03. Although these species are very closely related and share the same environment, their biochemical strategies in response to exposure to air or to increased plasma ammonia are different.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
The objective of the present study was to investigate the effects of the direct addition of pentoxifylline (PF) to the ejaculates of men with poor sperm quality before freezing on post-thaw sperm motility, viability, acrosome integrity, and agonist-induced acrosome reaction. Semen specimens from 16 infertile men with impaired sperm count and motility (oligoasthenozoospermia) were divided into two equal aliquots: one received no treatment (control) while the other was incubated with 5 mM PF (treated). Both aliquots were cryopreserved by the liquid nitrogen vapor method. Motility was assessed according to WHO criteria. Acrosome integrity and spontaneous and calcium ionophore-induced acrosome reactions were assessed with fluorescein isothiocyanate-conjugated peanut agglutinin combined with a supra-vital dye (Hoechst-33258). Cryopreservation impaired sperm motility (percentage reduction: 87.4 (interquartile range, IQ: 70.3-92.9) vs 89.1 (IQ: 72.7-96.0%)), viability (25.9 (IQ: 22.2-29.7) vs 25.6 (IQ: 19.7-40.3%)) and acrosome integrity (18.9 (IQ: 5.4-38.9) vs 26.8 (IQ: 0.0-45.2%)) to the same extent in both treated and control aliquots. However, PF treatment before freezing improved the acrosome reaction to ionophore challenge test scores in cryopreserved spermatozoa (9.7 (IQ: 6.6-19.7) vs 4.8 (IQ: 0.5-6.8%); P = 0.002). These data show that pre-freeze treatment of poor quality human sperm with pentoxifylline did not improve post-thaw motility or viability nor did it prevent acrosomal loss during the freeze-thaw process. However, PF, as used, improved the ability of thawed spermatozoa to undergo the acrosome reaction in response to calcium ionophore. The present data indicate that treatment of poor quality human sperm with PF may enhance post-thaw sperm fertilizing ability.
Resumo:
The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.
Resumo:
The reflectance of thin films of magnesium doped SrRu03(Mg-SR0) produced by pulsed laser deposition on SrTiOa (100) substrates has been measured at room temperature between 100 and 7500 cm~^. The films were chosen to have wide range of thickness, stoichiometry and electrical properties. As the films were very thin (less than 300 nm), and some were insulating the reflectance data shows structures due to both the film and the substrate. Hence, the data was analyzed using Kramers-Kronig constrained variational fitting (VDF) method to extract the real optical conductivity of the Mg-SRO films. Although the VDF technique is flexible enough to fit all features of the reflectance spectra, it seems that VDF could not eliminate the substrate's contribution from fllm conductivity results. Also the comparison of the two different programs implementing VDF fltting shows that this technique has a uniqueness problem. The optical properties are discussed in light of the measured structural and transport properties of the fllms which vary with preparation conditions and can be correlated with differences in stoichiometry. This investigation was aimed at checking the VDF technique and also getting answer to the question whether Mg^"*" substitutes in to Ru or Sr site. Analysis of our data suggests that Mg^+ goes to Ru site.
Resumo:
The far infrared reflectance of Sb2Te3 , Sbi.97Vo.o3Te3 and Sbi.94Cr .o6Te3 was measured near normal incidence at different temperatures (between 45K and 300K). The direct current resistivities of the above samples were also measured between the temperatures of 4K and 300K. Also Kramers Kronig (KK) analyses were performed on the reflectance spectra to obtain the optical conductivities. In the doped samples, it was observed that a phonon at 62cm-1 softens to about 55cm-1 on decreasing the temperature from 295K to 45K. Also, it was observed that the plasma frequency of the doped samples is independent of doping. The scattering rate for the vanadium doped sample was seen to be greater than that for the chromium doped sample despite the fact that vanadium impurity density is less than that of chromium. The Drude-Lorentz model fits to the KK optical conductivity show that the samples used in this work are conventional metals. Definitive measurements of the temperature dependence of the scattering rate across the ferromagnetic transition await equipment changes allowing measurements at low temperature using the mercury cadmium telluride (MCT) detector.
Resumo:
A system comprised of a Bomem interferometer and a LT3-110 Heli-Tran cryostat was set up to measure the reflectance of materials in the mid-infrared spectral region. Several tests were conducted to ensure the consistency and reliability of the system. Silicon and Chromium, two materials with well known optical properties were measured to test the accuracy of the system, and the results were found to be in good agreement with the literature. Reflectance measurements on pure SnTe and several Pb and Mn-doped alloys were carried out. These materials were chosen because they exhibit a strong plasma edge in the mid infrared region. The optical conductivity and several related optical parameters were calculated from the measured reflectance. Very low temperature measurements were carried out in the far-infrared on Sn9SMn2Te, and the results are indicative of a spin glass phase at 0.8 K. Resistivity measurements were made at room temperature. The resistivity values were found, as expected, to decrease with increasing carrier concentration and to increase with increasing manganese concentration.
Resumo:
A ~si MAS NMR study of spin-lattice relaxation behaviour
in paramagnetic-doped crystalline silicates was undertaken,
using synthetic magnesium orthosilicate (forsterite) and
synthetic zinc orthosilicate (willemite) doped with 0.1% to
20% of Co(II), Ni(II), or CU(II), as experimental systems.
All of the samples studied exhibited a longitudinal
magnetization return to the Boltzmann distribution of nuclear
spin states which followed a stretched-exponential function of
time:
Y=exp [- (tjTn) n], O
Resumo:
We report the results of crystal structure, magnetization and resistivity measurements of Bi doped LaVO3. X-ray diffraction (XRD) shows that if doping Bi in the La site is less than ten percent, the crystal structure of La1-xBixVO3 remains unchanged and its symmetry is orthorhombic. However, for higher Bi doping (>10%) composite compounds are found where the XRD patterns are characterized by two phases: LaVO3+V2O3. Energy-dispersive analysis of the x-ray spectroscopy (EDAX) results are used to find a proper atomic percentage of all samples. The temperature dependence of the mass magnetization of pure and single phase doped samples have transition temperatures from paramagnetic to antiferromagnetic region at TN=140 K. This measurement for bi-phasic samples indicates two transition temperatures, at TN=140 K (LaVO3) and TN=170 K (V2O3). The temperature dependence of resistivity reveals semiconducting behavior for all samples. Activation energy values for pure and doped samples are extracted by fitting resistivity versus temperature data in the framework of thermal activation process.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.
Resumo:
Ce projet a pour but d’évaluer la capacité de la voie des pentoses phosphates (VPP) dans les racines transgéniques de pomme de terre (Solanum tuberosum) modifiées pour exprimer différents niveaux de l'hexokinase (HK) et de la triosephosphate isomérase cytosolique (cTPI). Dans les racines, la VPP alimente la voie de l’assimilation de l’azote en equivalents réducteurs et permet donc la biosynthèse des acides aminés. Le glucose-6-phosphate produit par l’HK est consommé par la partie oxydative de la VPP catalysée par la glucose-6-phosphate déshydrogénase (G6PDH) et la 6-phosphogluconate déshydrogénase (6PGDH). Les changements dans l'expression de HK et cTPI peuvent affecter le fonctionnement de la VPP et les mécanismes qui sont liés à l’utilisation des équivalents réducteurs produits par la VPP, comme l'assimilation de l’azote et la synthèse des acides aminés. Afin d’évaluer l’effet des manipulations génétiques de l’HK et de la cTPI sur l’assimilation de l’azote, nous avons cultivé les racines transgéniques sur des milieux contenant des concentrations élevées (7 mM) ou basses (0,7 mM) de nitrate d’ammonium comme source d’azote. Les résultats montrent que la culture sur un milieu riche en azote induit les activités G6PDH et 6PGDH. Les données montrent que la capacité de la VPP est plus grande avec des niveaux élevés en HK ou en cTPI. Nous avons aussi pu démontrer une plus grande activité spécifique de l’HK dans les conditions pauvres en azote. Ces données ont été complémentées par des mesures des pools d’acides aminés dans les racines transgéniques cultivées sur différents niveaux d’azote. Aucune tendance notable des pools d’acides aminés n’a été remarquée dans les racines modifiées pour leur contenu en HK suggèrant que la manipulation de HK n’affecte pas l'assimilation de l’azote. Dans les racines transgéniques modifiées pour la cTPI, les ratios Gln/Glu et Asn/Asp sont plus élevés chez les clones antisens, indiquant une assimilation de l’azote plus élevée. Ces résultats ont démontré l'activation de l'assimilation de l’azote chez les clones antisens cTPI dans les conditions élevées et basses d’azote alors que la manipulation de l’HK n’affecte pas l’assimilation de l’azote.
Resumo:
Rampant increases in oil prices and detrimental effects of fossil fuels on the environment have been the main impetus for the development of environmentally friendly and sustainable energy sources. Amongst the many possibilities, microalgae have been proposed as a new alternative energy source to fossil fuels, as their growth is both sustainable and ecologically safe. By definition, microalgae are unicellular photosynthetic microorganisms containing chlorophyll a. These organisms are capable of producing large quantities of oils, surpassing that of traditional oil-seed crops, which can be transformed, through chemical processes, into biofuels such as biodiesel or bio-gasoline. Thus, recent research has gone into discovering high lipid producing algal strains, optimising growth media for increased lipid production and developing metabolic engineering to make microalgae a source of biofuel that is competitive to more traditional sources of biofuel and even to fossil fuel. In this context, the research reported here focused on using a mixotrophic growth mode as a way to increase lipid production for certain strains of microalgae. In addition, nitrogen starvation combined with mixotrophy was studied to analyse its effects on lipid production. Mixotrophy is the parallel usage of two trophic modes, in our case photoautotrophy and heterotrophy. Consequently, 12 algal strains were screened for mixotrophic growth, using glycerol as a carbon source. Glycerol is a waste product of the current biodiesel industry; it is a cheap and abundant carbon source present in many metabolic pathways. From this initial screening, several strains were chosen for subsequent experiments involving nitrogen starvation. Nitrogen starvation has been shown to induce lipid accumulation. The results obtained show that a mixotrophic growth mode, using glycerol as a carbon source, enhances lipid production for certain strains. Moreover, lipid enhancement was shown for nitrogen starvation combined with mixotrophic growth mode. This was dependant on time spent under nitrogen starvation and on initial concentrations of the nitrogen source.
Resumo:
Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)–acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3:18 10 3 mol/l for a dye concentration of 6:2 10 4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.