844 resultados para neural representations
Resumo:
La maladie de Parkinson (PD) a été uniquement considérée pour ses endommagements sur les circuits moteurs dans le cerveau. Il est maintenant considéré comme un trouble multisystèmique, avec aspects multiples non moteurs y compris les dommages intérêts pour les circuits cognitifs. La présence d’un trouble léger de la cognition (TCL) de PD a été liée avec des changements structurels de la matière grise, matière blanche ainsi que des changements fonctionnels du cerveau. En particulier, une activité significativement réduite a été observée dans la boucle corticostriatale ‘cognitive’ chez des patients atteints de PD-TCL vs. PD non-TCL en utilisant IRMf. On sait peu de cours de ces modèles fonctionnels au fil du temps. Dans cette étude, nous présentons un suivi longitudinal de 24 patients de PD non démente qui a subi une enquête neuropsychologique, et ont été séparés en deux groupes - avec et sans TCL (TCL n = 11, non-TCL n = 13) en fonction du niveau 2 des recommandations de la Movement Disrders Society pour le diagnostic de PD-TCL. Ensuite, chaque participant a subi une IRMf en effectuant la tâche de Wisconsin pendant deux sessions, 19 mois d'intervalle. Nos résultats longitudinaux montrent qu'au cours de la planification de période de la tâche, les patients PD non-TCL engageant les ressources normales du cortex mais ils ont activé en plus les zones corticales qui sont liés à la prise de décision tel que cortex médial préfrontal (PFC), lobe pariétal et le PFC supérieure, tandis que les PD-TCL ont échoué pour engager ces zones en temps 2. Le striatum n'était pas engagé pour les deux groupes en temps 1 et pour le groupe TCL en temps 2. En outre, les structures médiales du lobe temporal étaient au fil du temps sous recrutés pour TCL et Non-TCL et étaient positivement corrélés avec les scores de MoCA. Le cortex pariétal, PFC antérieur, PFC supérieure et putamen postérieur étaient négativement corrélés avec les scores de MoCA en fil du temps. Ces résultats révèlent une altération fonctionnelle pour l’axe ganglial-thalamo-corticale au début de PD, ainsi que des niveaux différents de participation corticale pendant une déficience cognitive. Cette différence de recrutement corticale des ressources pourrait refléter longitudinalement des circuits déficients distincts de trouble cognitive légère dans PD.
Resumo:
Dans cette dissertation, nous présentons plusieurs techniques d’apprentissage d’espaces sémantiques pour plusieurs domaines, par exemple des mots et des images, mais aussi à l’intersection de différents domaines. Un espace de représentation est appelé sémantique si des entités jugées similaires par un être humain, ont leur similarité préservée dans cet espace. La première publication présente un enchaînement de méthodes d’apprentissage incluant plusieurs techniques d’apprentissage non supervisé qui nous a permis de remporter la compétition “Unsupervised and Transfer Learning Challenge” en 2011. Le deuxième article présente une manière d’extraire de l’information à partir d’un contexte structuré (177 détecteurs d’objets à différentes positions et échelles). On montrera que l’utilisation de la structure des données combinée à un apprentissage non supervisé permet de réduire la dimensionnalité de 97% tout en améliorant les performances de reconnaissance de scènes de +5% à +11% selon l’ensemble de données. Dans le troisième travail, on s’intéresse à la structure apprise par les réseaux de neurones profonds utilisés dans les deux précédentes publications. Plusieurs hypothèses sont présentées et testées expérimentalement montrant que l’espace appris a de meilleures propriétés de mixage (facilitant l’exploration de différentes classes durant le processus d’échantillonnage). Pour la quatrième publication, on s’intéresse à résoudre un problème d’analyse syntaxique et sémantique avec des réseaux de neurones récurrents appris sur des fenêtres de contexte de mots. Dans notre cinquième travail, nous proposons une façon d’effectuer de la recherche d’image ”augmentée” en apprenant un espace sémantique joint où une recherche d’image contenant un objet retournerait aussi des images des parties de l’objet, par exemple une recherche retournant des images de ”voiture” retournerait aussi des images de ”pare-brises”, ”coffres”, ”roues” en plus des images initiales.
Resumo:
Les anomalies du tube neural (ATN) sont des anomalies développementales où le tube neural reste ouvert (1-2/1000 naissances). Afin de prévenir cette maladie, une connaissance accrue des processus moléculaires est nécessaire. L’étiologie des ATN est complexe et implique des facteurs génétiques et environnementaux. La supplémentation en acide folique est reconnue pour diminuer les risques de développer une ATN de 50-70% et cette diminution varie en fonction du début de la supplémentation et de l’origine démographique. Les gènes impliqués dans les ATN sont largement inconnus. Les études génétiques sur les ATN chez l’humain se sont concentrées sur les gènes de la voie métabolique des folates du à leur rôle protecteur dans les ATN et les gènes candidats inférés des souris modèles. Ces derniers ont montré une forte association entre la voie non-canonique Wnt/polarité cellulaire planaire (PCP) et les ATN. Le gène Protein Tyrosine Kinase 7 est un membre de cette voie qui cause l’ATN sévère de la craniorachischisis chez les souris mutantes. Ptk7 interagit génétiquement avec Vangl2 (un autre gène de la voie PCP), où les doubles hétérozygotes montrent une spina bifida. Ces données font de PTK7 comme un excellent candidat pour les ATN chez l’humain. Nous avons re-séquencé la région codante et les jonctions intron-exon de ce gène dans une cohorte de 473 patients atteints de plusieurs types d’ATN. Nous avons identifié 6 mutations rares (fréquence allélique <1%) faux-sens présentes chez 1.1% de notre cohorte, dont 3 sont absentes dans les bases de données publiques. Une variante, p.Gly348Ser, a agi comme un allèle hypermorphique lorsqu'elle est surexprimée dans le modèle de poisson zèbre. Nos résultats impliquent la mutation de PTK7 comme un facteur de risque pour les ATN et supporte l'idée d'un rôle pathogène de la signalisation PCP dans ces malformations.
Resumo:
Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).
Resumo:
La capacité du système visuel humain à compléter une image partiellement dévoilée et à en dériver une forme globale à partir de ses fragments visibles incomplets est un phénomène qui suscite, jusqu’à nos jours, l’intérêt de nombreux scientifiques œuvrant dans différents milieux de recherche tels que l’informatique, l’ingénierie en intelligence artificielle, la perception et les neurosciences. Dans le cadre de la présente thèse, nous nous sommes intéressés spécifiquement sur les substrats neuronaux associés à ce phénomène de clôture perceptive. La thèse actuelle a donc pour objectif général d’explorer le décours spatio-temporel des corrélats neuronaux associés à la clôture perceptive au cours d’une tâche d’identification d’objets. Dans un premier temps, le premier article visera à caractériser la signature électrophysiologique liée à la clôture perceptive chez des personnes à développement typique dans le but de déterminer si les processus de clôture perceptive reflèteraient l’interaction itérative entre les mécanismes de bas et de haut-niveau et si ceux-ci seraient sollicités à une étape précoce ou tardive lors du traitement visuel de l’information. Dans un deuxième temps, le second article a pour objectif d’explorer le décours spatio-temporel des mécanismes neuronaux sous-tendant la clôture perceptive dans le but de déterminer si les processus de clôture perceptive des personnes présentant un trouble autistique se caractérisent par une signature idiosyncrasique des changements d’amplitude des potentiels évoqués (PÉs). En d’autres termes, nous cherchons à déterminer si la clôture perceptive en autisme est atypique et nécessiterait davantage la contribution des mécanismes de bas-niveau et/ou de haut-niveau. Les résultats du premier article indiquent que le phénomène de clôture perceptive est associé temporellement à l’occurrence de la composante de PÉs N80 et P160 tel que révélé par des différences significatives claires entre des objets et des versions méconnaissables brouillées. Nous proposons enfin que la clôture perceptive s’avère un processus de transition reflétant les interactions proactives entre les mécanismes neuronaux œuvrant à apparier l’input sensoriel fragmenté à une représentation d’objets en mémoire plausible. Les résultats du second article révèlent des effets précoces de fragmentation et d’identification obtenus au niveau de composantes de potentiels évoqués N80 et P160 et ce, en toute absence d’effets au niveau des composantes tardives pour les individus avec autisme de haut niveau et avec syndrome d’Asperger. Pour ces deux groupes du trouble du spectre autistique, les données électrophysiologiques suggèrent qu’il n’y aurait pas de pré-activation graduelle de l’activité des régions corticales, entre autres frontales, aux moments précédant et menant vers l’identification d’objets fragmentés. Pour les participants autistes et avec syndrome d’Asperger, les analyses statistiques démontrent d’ailleurs une plus importante activation au niveau des régions postérieures alors que les individus à développement typique démontrent une activation plus élevée au niveau antérieur. Ces résultats pourraient suggérer que les personnes du spectre autistique se fient davantage aux processus perceptifs de bas-niveau pour parvenir à compléter les images d’objets fragmentés. Ainsi, lorsque confrontés aux images d’objets partiellement visibles pouvant sembler ambiguës, les individus avec autisme pourraient démontrer plus de difficultés à générer de multiples prédictions au sujet de l’identité d’un objet qu’ils perçoivent. Les implications théoriques et cliniques, les limites et perspectives futures de ces résultats sont discutées.
Resumo:
Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level.
Resumo:
La documentation scientifique fait état de la présence, chez l’adulte, de cellules souches et progénitrices neurales (CSPN) endogènes dans les zones sous-ventriculaire et sous-granulaire du cerveau ainsi que dans le gyrus denté de l’hippocampe. De plus, un postulat selon lequel il serait également possible de retrouver ce type de cellules dans la moelle épinière et le néocortex des mammifères adultes a été énoncé. L’encéphalopathie de Wernicke, un trouble neurologique grave toutefois réversible qui entraîne un dysfonctionnement, voire une défaillance du cerveau, est causée principalement par une carence importante en thiamine (CT). Des observations récentes laissent envisager que les facteurs en cause dans la prolifération et la différenciation des CSPN pourraient également jouer un rôle important lors d’un épisode de CT. L’hypothèse, selon laquelle l’identification de nouveaux métabolites entrant dans le mécanisme ou la séquence de réactions se soldant en une CT pourraient en faciliter la compréhension, a été émise au moyen d'une démarche en cours permettant d’établir le profil des modifications métaboliques qui surviennent en de telles situations. Cette approche a été utilisée pour constater les changements métaboliques survenus au niveau du foyer cérébral dans un modèle de rats déficients en thiamine (rats DT), particulièrement au niveau du thalamus et du colliculus inférieur (CI). La greffe de CSPN a quant à elle été envisagée afin d’apporter de nouvelles informations sur la participation des CSPN lors d’un épisode de CT et de déterminer les bénéfices thérapeutiques potentiels offerts par cette intervention. Les sujets de l’étude étaient répartis en quatre groupes expérimentaux : un premier groupe constitué de rats dont la CT était induite par la pyrithiamine (rats DTiP), un deuxième groupe constitué de rats-contrôles nourris ensemble (« pair-fed control rats » ou rats PFC) ainsi que deux groupes de rats ayant subi une greffe de CSPN, soit un groupe de rats DTiP greffés et un dernier groupe constitué de rats-contrôles (rats PFC) greffés. Les échantillons de foyers cérébraux (thalamus et CI) des quatre groupes de rats ont été prélevés et soumis à des analyses métabolomiques non ciblées ainsi qu’à une analyse visuelle par microscopie à balayage électronique (SEM). Une variété de métabolites-clés a été observée chez les groupes de rats déficients en thiamine (rats DTiP) en plus de plusieurs métabolites dont la documentation ne faisait pas mention. On a notamment constaté la présence d’acides biliaires, d’acide cynurénique et d’acide 1,9— diméthylurique dans le thalamus, alors que la présence de taurine et de carnosine a été observée dans le colliculus inférieur. L’étude a de plus démontré une possible implication des CSPN endogènes dans les foyers cérébraux du thalamus et du colliculus inférieur en identifiant les métabolites-clés ciblant les CSPN. Enfin, les analyses par SEM ont montré une amélioration notable des tissus à la suite de la greffe de CSPN. Ces constatations suggèrent que l’utilisation de CSPN pourrait s’avérer une avenue thérapeutique intéressante pour soulager la dégénérescence symptomatique liée à une grave carence en thiamine chez l’humain.
Resumo:
Ma thèse porte sur les représentations de curanderismo dans Chicana/o textes. Une tradition de guérison, une vision du monde, un système de croyances et de pratiques d'origines diverses, curanderismo répond aux besoins médicaux, religieux, culturels, sociaux et politiques des Chicanas/os à la fois sur le plan individuel et communautaire. Dans mon analyse de textes littéraires (Bless Me, Ultima de Rudolfo Anaya, les poèmes sélectionnés de Pat Mora, The Hungry Woman: A Mexican Medea de Cherríe Moraga) et du cours académique sur curanderismo enseigné à l'Université du Nouveau-Mexique à Albuquerque, que j’approche comme un texte culturel, curanderismo reflète les façons complexes et souvent ambiguës de représenter Chicana/o recherche d'identité, d’affirmation de soi et d’émancipation, résultat d'une longue histoire de domination et de discrimination de Chicana/o aux Etats-Unis. Dans les textes que j’aborde dans ma thèse curanderismo assume le rôle d'une puissante métaphore qui réunit une variété de valeurs, attitudes, concepts et notions dans le but ultimede célébrer le potentiel de soi-même.
Resumo:
The thesis introduced the octree and addressed the complete nature of problems encountered, while building and imaging system based on octrees. An efficient Bottom-up recursive algorithm and its iterative counterpart for the raster to octree conversion of CAT scan slices, to improve the speed of generating the octree from the slices, the possibility of utilizing the inherent parallesism in the conversion programme is explored in this thesis. The octree node, which stores the volume information in cube often stores the average density information could lead to “patchy”distribution of density during the image reconstruction. In an attempt to alleviate this problem and explored the possibility of using VQ to represent the imformation contained within a cube. Considering the ease of accommodating the process of compressing the information during the generation of octrees from CAT scan slices, proposed use of wavelet transforms to generate the compressed information in a cube. The modified algorithm for generating octrees from the slices is shown to accommodate the eavelet compression easily. Rendering the stored information in the form of octree is a complex task, necessarily because of the requirement to display the volumetric information. The reys traced from each cube in the octree, sum up the density en-route, accounting for the opacities and transparencies produced due to variations in density.
Resumo:
The mathematical formulation of empirically developed formulas Jirr the calculation of the resonant frequency of a thick-substrate (h s 0.08151 A,,) microstrip antenna has been analyzed. With the use qt' tunnel-based artificial neural networks (ANNs), the resonant frequency of antennas with h satisfying the thick-substrate condition are calculated and compared with the existing experimental results and also with the simulation results obtained with the use of an IE3D software package. The artificial neural network results are in very good agreement with the experimental results
Resumo:
In this paper, a comparison study among three neuralnetwork algorithms for the synthesis of array patterns is presented. The neural networks are used to estimate the array elements' excitations for an arbitrary pattern. The architecture of the neural networks is discussed and simulation results are presented. Two new neural networks, based on radial basis functions (RBFs) and wavelet neural networks (WNNs), are introduced. The proposed networks offer a more efficient synthesis procedure, as compared to other available techniques
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. This paper describes how an ANN can be used to identify the spectral lines of elements. The spectral lines of Cadmium (Cd), Calcium (Ca), Iron (Fe), Lithium (Li), Mercury (Hg), Potassium (K) and Strontium (Sr) in the visible range are chosen for the investigation. One of the unique features of this technique is that it uses the whole spectrum in the visible range instead of individual spectral lines. The spectrum of a sample taken with a spectrometer contains both original peaks and spurious peaks. It is a tedious task to identify these peaks to determine the elements present in the sample. ANNs capability of retrieving original data from noisy spectrum is also explored in this paper. The importance of the need of sufficient data for training ANNs to get accurate results is also emphasized. Two networks are examined: one trained in all spectral lines and other with the persistent lines only. The network trained in all spectral lines is found to be superior in analyzing the spectrum even in a noisy environment.
Resumo:
It is shown that the invariant integral, viz., the Kolmogorov second entropy, is eminently suited to characterize EEG quantitatively. The estimation obtained for a "clinically normal" brain is compared with a previous result obtained from the EEG of a person under epileptic seizure.