932 resultados para multiscale entropy
Resumo:
Diagnostics of rolling element bearings is usually performed by means of vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. The aim is to monitor the integrity of the bearing components, in order to avoid catastrophic failures, or to implement condition based maintenance strategies. In particular, the trend in this field is to combine in a single algorithm different signal-enhancement and signal-analysis techniques. Among the first ones, Minimum Entropy Deconvolution (MED) has been pointed out as a key tool able to highlight the effect of a possible damage in one of the bearing components within the vibration signal. This paper presents the application of this technique to signals collected on a simple test-rig, able to test damaged industrial roller bearings in different working conditions. The effectiveness of the technique has been tested, comparing the results of one undamaged bearing with three bearings artificially damaged in different locations, namely on the inner race, outer race and rollers. Since MED performances are dependent on the filter length, the most suitable value of this parameter is defined on the basis of both the application and measured signals. This represents an original contribution of the paper.
Resumo:
The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.
Resumo:
This paper presents a new multi-scale place recognition system inspired by the recent discovery of overlapping, multi-scale spatial maps stored in the rodent brain. By training a set of Support Vector Machines to recognize places at varying levels of spatial specificity, we are able to validate spatially specific place recognition hypotheses against broader place recognition hypotheses without sacrificing localization accuracy. We evaluate the system in a range of experiments using cameras mounted on a motorbike and a human in two different environments. At 100% precision, the multiscale approach results in a 56% average improvement in recall rate across both datasets. We analyse the results and then discuss future work that may lead to improvements in both robotic mapping and our understanding of sensory processing and encoding in the mammalian brain.
Resumo:
This study investigated movement synchronization of players within and between teams during competitive association football performance. Cluster phase analysis was introduced as a method to assess synchronies between whole teams and between individual players with their team as a function of time, ball possession and field direction. Measures of dispersion (SD) and regularity (sample entropy – SampEn – and cross sample entropy – Cross-SampEn) were used to quantify the magnitude and structure of synchrony. Large synergistic relations within each professional team sport collective were observed, particularly in the longitudinal direction of the field (0.89 ± 0.12) compared to the lateral direction (0.73 ± 0.16, p < .01). The coupling between the group measures of the two teams also revealed that changes in the synchrony of each team were intimately related (Cross-SampEn values of 0.02 ± 0.01). Interestingly, ball possession did not influence team synchronization levels. In player–team synchronization, individuals tended to be coordinated under near in-phase modes with team behavior (mean ranges between −7 and 5° of relative phase). The magnitudes of variations were low, but more irregular in time, for the longitudinal (SD: 18 ± 3°; SampEn: 0.07 ± 0.01), compared to the lateral direction (SD: 28 ± 5°; SampEn: 0.06 ± 0.01, p < .05) on-field. Increases in regularity were also observed between the first (SampEn: 0.07 ± 0.01) and second half (SampEn: 0.06 ± 0.01, p < .05) of the observed competitive game. Findings suggest that the method of analysis introduced in the current study may offer a suitable tool for examining team’s synchronization behaviors and the mutual influence of each team’s cohesiveness in competing social collectives.
Resumo:
This study investigated changes in the complexity (magnitude and structure of variability) of the collective behaviours of association football teams during competitive performance. Raw positional data from an entire competitive match between two professional teams were obtained with the ProZone® tracking system. Five compound positional variables were used to investigate the collective patterns of performance of each team including: surface area, stretch index, team length, team width, and geometrical centre. Analyses involve the coefficient of variation (%CV) and approximate entropy (ApEn), as well as the linear association between both parameters. Collective measures successfully captured the idiosyncratic behaviours of each team and their variations across the six time periods of the match. Key events such as goals scored and game breaks (such as half time and full time) seemed to influence the collective patterns of performance. While ApEn values significantly decreased during each half, the %CV increased. Teams seem to become more regular and predictable, but with increased magnitudes of variation in their organisational shape over the natural course of a match.
Resumo:
Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA << PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid \[M - H](-) anions. (c) 2005 American Society for Mass Spectrometry.
Resumo:
We introduce the notion of distributed password-based public-key cryptography, where a virtual high-entropy private key is implicitly defined as a concatenation of low-entropy passwords held in separate locations. The users can jointly perform private-key operations by exchanging messages over an arbitrary channel, based on their respective passwords, without ever sharing their passwords or reconstituting the key. Focusing on the case of ElGamal encryption as an example, we start by formally defining ideal functionalities for distributed public-key generation and virtual private-key computation in the UC model. We then construct efficient protocols that securely realize them in either the RO model (for efficiency) or the CRS model (for elegance). We conclude by showing that our distributed protocols generalize to a broad class of “discrete-log”-based public-key cryptosystems, which notably includes identity-based encryption. This opens the door to a powerful extension of IBE with a virtual PKG made of a group of people, each one memorizing a small portion of the master key.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Aim Evidence linking the accumulation of exotic species to the suppression of native diversity is equivocal, often relying on data from studies that have used different methods. Plot-level studies often attribute inverse relationships between native and exotic diversity to competition, but regional abiotic filters, including anthropogenic influences, can produce similar patterns.We seek to test these alternatives using identical scale-dependent sampling protocols in multiple grasslands on two continents. Location Thirty-two grassland sites in North America and Australia. Methods We use multiscale observational data, collected identically in grain and extent at each site, to test the association of local and regional factors with the plot-level richness and abundance of native and exotic plants. Sites captured environmental and anthropogenic gradients including land-use intensity, human population density, light and soil resources, climate and elevation. Site selection occurred independently of exotic diversity, meaning that the numbers of exotic species varied randomly thereby reducing potential biases if only highly invaded sites were chosen. Results Regional factors associated directly or indirectly with human activity had the strongest associations with plot-level diversity. These regional drivers had divergent effects: urban-based economic activity was associated with high exotic : native diversity ratios; climate- and landscape-based indicators of lower human population density were associated with low exotic : native ratios. Negative correlations between plot-level native and exotic diversity, a potential signature of competitive interactions, were not prevalent; this result did not change along gradients of productivity or heterogeneity. Main conclusion We show that plot-level diversity of native and exotic plants are more consistently associatedwith regional-scale factors relating to urbanization and climate suitability than measures indicative of competition. These findings clarify the long-standing difficulty in resolving drivers of exotic diversity using single-factor mechanisms, suggesting that multiple interacting anthropogenic-based processes best explain the accumulation of exotic diversity in modern landscapes.
Resumo:
In this paper, we propose a steganalysis method that is able to identify the locations of stego bearing pixels in the binary image. In order to do that, our proposed method will calculate the residual between a given stego image and its estimated cover image. After that, we will compute the local entropy difference between these two versions of images as well. Finally, we will compute the mean of residual and mean of local entropy difference across multiple stego images. From these two means, the locations of stego bearing pixels can be identified. The presented empirical results demonstrate that our proposed method can identify the stego bearing locations of near perfect accuracy when sufficient stego images are supplied. Hence, our proposed method can be used to reveal which pixels in the binary image have been used to carry the secret message.
Resumo:
The mechanical properties of microfilament networks are systematically summarized at different special scales in this paper. We have presented the mechanical models of single microfilaments and microfilament networks at microscale. By adopting a coarse-grained simulation strategy, the mechanical stability of microfilaments related cellular structures are analysed. Structural analysis is conducted to microfilament networks to understand the stress relaxation under compression. The nanoscale molecular mechanisms of the microfilaments deformation is also summarized from the viewpoint of molecular dynamics simulation. This paper provides the fundaments of multiscale modelling framework for the mechanical behaviours simulation of hierarchical microfilament networks.
Resumo:
Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.
Resumo:
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.