984 resultados para modern atomic theory
Resumo:
Background-Novel therapies have recently become available for pulmonary arterial hypertension. We conducted a study to characterize mortality in a multicenter prospective cohort of patients diagnosed with idiopathic, familial, or anorexigen-associated pulmonary arterial hypertension in the modern management era. Methods and Results-Between October 2002 and October 2003, 354 consecutive adult patients with idiopathic, familial, or anorexigen-associated pulmonary arterial hypertension (56 incident and 298 prevalent cases) were prospectively enrolled. Patients were followed up for 3 years, and survival rates were analyzed. For incident cases, estimated survival (95% confidence intervals [CIs]) at 1, 2, and 3 years was 85.7% (95% CI, 76.5 to 94.9), 69.6% (95% CI, 57.6 to 81.6), and 54.9% (95% CI, 41.8 to 68.0), respectively. In a combined analysis population (incident patients and prevalent patients diagnosed within 3 years before study entry; n = 190), 1-, 2-, and 3-year survival estimates were 82.9% (95% CI, 72.4 to 95.0), 67.1% (95% CI, 57.1 to 78.8), and 58.2% (95% CI, 49.0 to 69.3), respectively. Individual survival analysis identified the following as significantly and positively associated with survival: female gender, New York Heart Association functional class I/II, greater 6-minute walk distance, lower right atrial pressure, and higher cardiac output. Multivariable analysis showed that being female, having a greater 6-minute walk distance, and exhibiting higher cardiac output were jointly significantly associated with improved survival. Conclusions-In the modern management era, idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension remains a progressive, fatal disease. Mortality is most closely associated with male gender, right ventricular hemodynamic function, and exercise limitation. (Circulation. 2010; 122: 156-163.)
Resumo:
We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.
Resumo:
We report the observation of the quantum effects of competing chi((2)) nonlinearities. We also report classical signatures of competition, namely, clamping of the second-harmonic power and production of nondegenerate frequencies in the visible. Theory is presented that describes the observations as resulting from competition between various chi((2)) up-conversion and down-conversion processes. We show that competition imposes hitherto unsuspected limits to both power generation and squeezing. The observed signatures are expected to be significant effects in practical systems.
Resumo:
We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the squared energy distribution as a function of time demonstrates dynamical localization. However, for larger modulation delocalization occurs.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
We analyze the properties of light beams carrying phase singularities, or optical vortices. The transformations of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible scenarios where additional vortices appear or annihilate during free propagation of such a combined beam. Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density distribution in a combined beam is established. We show that, in spite of any variation in the number of vortices in a combined beam, the total angular momentum is constant during the propagation. [S1050-2947(97)09910-1].