986 resultados para microbial pest control
Resumo:
The Red-billed Quelea (Quelga quelaa), because of its widespread destruction of grain crops throughout its range in Africa, is one of the most studied and written about granivorous bird species. Less publicized are more local bird pests in Africa which may be equally Important. The Village Weaver, (Ploceus cucullatus), for example, is a pest in many countries, while some other Ploecids with limited destructive habits create local problems. Significant crop losses also occur where there are large populations of Golden Sparrows (Passer luteus), House Sparrows (Passer domesticus), Red Bishops (Euplectes oryx), Doves (Streptopelia spp.), Glossy Starlings (Lamprotornis chalybaeus), Parakeets (Psittacula spp.), and some waterfowl (Mackworth-Praed and Grant, 1952; Pans Manual No. 3, 1974; Park, 1974). Crop losses from local bird pests were reported in early February 1975 to the Sudan Plant Protection Bird Control Unit of the Ministry of Agriculture. A mechanized farm scheme in Khartoum North had large concentrations of Red Bishops roosting in maize and feeding on an early-maturing wheat variety (Mexicana). Small flocks of Golden Sparrows and House Sparrows also were present. Bird damage was clearly visible, especially at the corners and along the edges of the ripening wheatfields. Ground spraying with Queletox (60% a.1. Fenthion) on roosts of the Golden and House Sparrows was conducted along hedge rows of acacia (Acacia mellifera) located at the north end of the farm. Although the spray killed large numbers of roosting birds, damage con- tinued as the wheat matured. Pilot field trials were thus organized to test the effectiveness of other crop protection techniques. Because birds fed throughout many blocks of wheat which matured at different periods, it was felt that several different experiments could be conducted without Interfering with each other. The control techniques Included an acoustical repellent, a chemical repellent, a chemical frightening agent, and a trap. The experiments, conducted from February 7 through February 23, 1975, were not designed as an integrated control operation.
Resumo:
Up to 1949, the Fish and Game Branch employed personnel, some of whom were temporary, to attempt control of the extremely high wolf pop¬ulations of the central and northern portions of British Columbia. Coyotes were also very numerous in the central and southern regions and had to be considered because of their depredations. The field men were keen and conscientious but their efforts were not co-ordinated. Control areas were severely restricted in size as techniques were not adaptable enough and because of a lack of manpower. Eventually, sheepmen went out of business entirely over wide areas, cattlemen were subjected to huge annual losses, and sportsmen were very concerned. However, stock losses constituted the major complaint and resulted in ranchers demanding action* Two major changes came out of this. First, the bounty on wolves was raised and second, the present Predator Control Division was formed. The administration was convinced that a force of experienced, fully-trained field staff under a single supervision would be far more effective than bounty payments. Unfortunately, bounties were in vogue during that time and forced the necessity of proving the worth of organized controls before any consideration could be given to the elimination of the bounty system.
Resumo:
A mail survey was conducted to assess current computer hardware use and perceived needs of potential users for software related to crop pest management in Nebraska. Surveys were sent to University of Nebraska-Lincoln agricultural extension agents, agribusiness personnel (including independent crop consultants), and crop producers identified by extension agents as computer users. There were no differences between the groups in several aspects of computer hardware use (percentage computer use, percentage IBM-compatible computer, amount of RAM memory, percentage with hard drive, hard drive size, or monitor graphics capability). Responses were similar among the three groups in several areas that are important to crop pest management (pest identification, pest biology, treatment decision making, control options, and pesticide selection), and a majority of each group expressed the need for additional sources of such information about insects, diseases, and weeds. However, agents mentioned vertebrate pest management information as a need more often than the other two groups. Also, majorities of each group expressed an interest in using computer software, if available, to obtain information in these areas. Appropriate software to address these needs should find an audience among all three groups.
Resumo:
SUMMARY: Federal Urban Rat Control Program grants were awarded to cities in different areas of the United States. Severe problems of rat infestations have been detected in many of the cities by the Environmental Health Service. Approximately 20% of 3.8 million people in the project areas were occupying homes infested with rats. Control operations are now in effect in all cities, and the living conditions of the people have been substantially improved. An increase in interest in rodent control also is evident in countries outside of the United States. The Technical Development Laboratories of the National Communicable Disease Center are participating in the World Health Organization program of research on new rodenticides. The evaluation program involves five steps which carry a candidate toxi¬cant from laboratory phase through field testing. Acceptability and suitable concentrations of both acute and accumulative rodenticides are determined. Observations are made on the hazard of the compound to pets and to other nontarget vertebrates. Laboratory and field studies have been completed on a new, promising stabilized scilliroside glycoside which has given excellent control of the Norway rat in 16 out of 19 premises. Another new coded compound has shown a unique specificity for roof rats as compared to Norway rats. Although anticoagulant resistant rat populations have occurred in several countries in Europe, as yet no evidence has been noted of such resistance in rats in the United States.
Resumo:
The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. , when supplemented to a basal diet (Tifton-85 hay sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect ( > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich , essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
Resumo:
In order to succeed in biological control programs, not only is it crucial to understand the number of natural enemies to be released but also on how many sites per area this releasing must be performed. These variables might differ deeply among egg parasitoid species and crops worked. Therefore, these trials were carried out to evaluate the parasitism (%) in eggs of Anticarsia gemmatalis and Pseudoplusia includens after the release of different densities of the egg parasitoid Trichogramma pretiosum. Field dispersal was also studied, in order to determine appropriate recommendations for the release of this parasitoid in soybean fields. The regression analysis between parasitism (%) and densities of the parasitoid indicated a quadratic effect for both A. gemmatalis and P. includens. The maximum parasitism within 24 h after the release was reached with densities of 25.6 and 51.2 parasitoids per host egg, respectively, for the two pests. Parasitism of T. pretiosum in eggs of P. includens decreased linearly as the distance of the pest eggs from the parasitoid release sites increased. For P. includens, the mean radius of T. pretiosum action and the area of parasitoid dispersal in the soybean crop were 8.01 m and 85.18 m(2), respectively. We conclude that for a successful biological control program of lepidopteran pests using T. pretiosum in soybean fields, a density of 25.6 parasitoids per host egg, divided into 117 sites per hectare, should be used.
Resumo:
BACKGROUND: Genetically modified MON 87701 X MON 89788 soybean (Glycine max), which expresses the Cry1Ac and EPSP-synthase proteins, has been registered for commercial use in Brazil. To develop an Insect Resistance Management (IRM) program for this event, laboratory and field studies were conducted to assess the high-dose concept and level of control it provides against Anticarsia gemmatalis and Pseudoplusia includens. RESULTS: The purified Cry1Ac protein was more active against A. gemmatalis [LC50 (FL 95%) = 0.23 (0.150.34) mu g Cry1Ac mL-1 diet] than P. includens [LC50 (FL 95%) = 3.72 (2.654.86) mu g Cry1Ac mL-1 diet]. In bioassays with freeze-dried MON 87701X MON 89788 soybean tissue diluted 25 times in an artificial diet, there was 100% mortality of A. gemmatalis and up to 95.79% mortality for P. includens. In leaf-disc bioassays and under conditions of high artificial infestation in the greenhouse and natural infestation in the field, MON 87701X MON 89788 soybean showed a high level of efficacy against both target pests. CONCLUSIONS: The MON 87701X MON 89788 soybean provides a high level of control against A. gemmatalis and P. includes, but a high-dose event only to A. gemmatalis. Copyright (c) 2012 Society of Chemical Industry
Resumo:
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of So Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in So Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.
Resumo:
Objective: The presence and survival of microorganisms on toothbrush bristles might play a role on the etiology of oral infections. The aim of this in vitro study was to evaluate the presence of bacterial contamination on new toothbrushes before oral contact. Materials and methods: Forty toothbrushes from five different manufacturers were used in this experimental study. Each manufacturer was divided according to conventional local of obtaining: industry, drugstore, market, and perfumery. The toothbrush heads were completely immersed into tubes containing 5.0 mL of sterile peptonated water (dilution 1:10). A group of eight tubes containing the sterile solution was used as control. After 21 days of anaerobic incubation, occurrence of contamination was visually evaluated and confirmed by light microscopy. Results: Bacterial growth in the medium, indicative of bristles contamination, was found in a total of 19 out of 40 samples (47.5%) evaluated: 6 out of 14 samples (42.85%) from industry group, 4 out of 8 samples (50.0%) from drugstore, 5 out of 10 samples (50.0%) from market, and 4 out of 8 samples (50.0%) from perfumery. Only the toothbrushes with bristles coated with chlorhexidine did not show contamination. The Gram-negative sporulating bacilli were the most prevalent form recovered. Conclusions: Except for chlorhexidine group, bacterial growth was observed in all groups evaluated irrespective local of obtaining. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
An investigation was conducted to test the hypothesis that the storage time of packaging sterility has no effect on contamination susceptibility even under deliberate bacterial exposure (Serratia marcescens). No growth of the test microorganisms was identified in the experimental group in any of the storage intervals (7, 14, 28, 90, and 180 days). Current recommendations/guidelines suggest that contamination of packaging occurs only because of events. This study, done in vitro, supports these recommendations. Copyright (c) 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Resumo:
Diatraea saccharalis, is a major sugarcane pest, causing damage to the stalks of sugarcane plants. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seeds and was tested for its insect growth regulatory effect. ApTI showed a dose-dependent effect on average larval weight and survival. 0.1% ApTI produced approximately 67% and 50% decreases in weight and survival larval, respectively. The results from dietary utilization experiments with D. saccharalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food, and an increase in approximate digestibility and metabolic cost. The level of trypsin was significantly decreased (ca. 55%) in the midgut of larvae reared on a diet containing 0.05% ApTI and the trypsin activity in ApTI-fed larvae demonstrated sensitivity to ApTI. The action of ApTI on the development of D. saccharalis larvae shows that this protein may have great toxic potential. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest. Thus, the objective of this work was to investigate the voluntary dispersal mechanisms of this mite. The hypothesis that the coconut mite disperses by walking, phoresis or wind were tested. The coconut mite was shown to be able to walk short distances between fruits of the same bunch or between bunches of the same plant. Phoresis on insects of the orders Hymenoptera (Apidae), Coleoptera (Curculionidae) and Lepidoptera (Phycitidae) was evaluated in the laboratory and in the field. Although in the laboratory mites were shown to be able to climb onto honeybees, field investigations failed to show these insects as important carriers of the pest, corroborating findings of previous works; however, both laboratory and field investigations suggested the curculionid Parisoschoenus obesulus Casey to be able to transport the coconut mite between plants. Similarly, laboratory and field investigations suggested wind to be important in the dispersal of the coconut mite between plants.
Resumo:
Occurrence of Zoophthora radicans infecting nymphs and adults of Thaumastocoris peregrinus Carpintero and Dellape, 2006 is reported in Brazil. This is a new record of host for this fungal species and the first fungal pathogen associated with this pest worldwide. Infection of Z. radicans on T. peregrinus populations on commercial Eucalyptus plantation (Eucalyptus spp.) reached up to 100%, and low insect densities were associated with high levels of fungal infection in three out of seven plots. This pathogen seems to be virulent against T. peregrinus and may play an important role in population regulations of this invasive pest through naturally induced epizootics. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
The blattisociid mite Lasioseius floridensis Berlese was found associated with the broad mite, Polyphagotarsonemus latus (Banks), on gerbera leaves in Mogi das Cruzes, State of Sao Paulo, Brazil. Blattisociid mites are not common on aerial plant parts, except under high air humidity levels. Some Lasioseius species have been mentioned as effective control agents of rice pest mites, but nothing is known about the biology of L. floridensis. The objective of this study was to evaluate whether the observed co-occurrence of L. floridensis and P. latus was just occasional or whether the latter could be important as food source for the former, assumed by laboratory evaluation of the ability of the predator to maintain itself, reproduce and develop on that prey. Biological parameters of L. floridensis were compared when exposed to P. latus and to other items as food. The study showed that mating is a pre-requisite for L. floridensis to oviposit and that oviposition rate was much higher on the soil nematode Rhabditella axei (Cobbold) (Rhabditidae) than on P. latus. Ovipositon on the acarid mite Tyrophagus putrescentiae (Schrank) was about the same as on P. latus, but it was nearly zero when the predator was fed the fungi Aspergillus flavus Link or Penicillium sp., or cattail (Typha sp.) pollen. Survivorship was higher in the presence of pollen and lower in the presence of A. flavus or Penicillium sp. than in the absence of those types of food. Life table parameters indicated that the predator performed much better on R. axei than on P. latus. To evaluate the potential effect of L. floridensis as predator of P. latus, complementary studies are warranted to determine the frequency of migration of L. floridensis to aerial plant parts, when predation on P. latus could occur.
Resumo:
Several predatory mites have been found in association with the coconut mite, Aceria guerreronis Keifer, in northeast Brazil. However, the latter still causes damage to coconut in that region. The objectives of this work were to compare the frequencies of occurrence of Neoseiulus (Phytoseiidae) and Proctolaelaps (Melicharidae) species on standing and aborted coconuts in coastal Pernambuco State, northeast Brazil and to analyze their possible limitations as control agents of the coconut mite, based on evaluations of the restrictions they may have to access the microhabitat inhabited by the pest and their functional and reproductive responses to increasing densities of the latter. Neoseiulus baraki (Athias-Henriot) was found mostly on standing coconuts whereas Proctolaelaps bickleyi (Bram) was found mostly on aborted coconuts. Measurements of the entrance to the microhabitat occupied by the coconut mite, between the bracts and the subjacent fruit surface, showed that this different pattern of predator prevalence could be related to predator sizes, although other environmental factors could not be disregarded. Progressively higher predation rate of N. baraki was observed up to an experimental density that corresponded to 1,200 coconut mites per fruit, which is close to the average number determined in northeast Brazil, reducing slightly afterwards. Predation rate of P. bickleyi reduced consistently but slightly with increasing prey densities, but in absolute values, rates were always much higher than determined for N. baraki. The excessively high killing capacity of P. bickleyi, probably related to its high feeding requirement, may be detrimental in terms of stability. In fact, such high requirement for food suggests that P. bickleyi might not have a strong relation with the coconut mite and that the latter may not be its main food source under natural conditions. It is concluded that body sizes of both predators and the exceedingly high feeding requirement of P. bickleyi may limit their performance as control agents of the coconut mite.