998 resultados para microbial conversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid strength distribution and the distribution of aromatics formed in the FCC gasoline conversion reaction on a ZSM-5 zeolite with different Na contents have been studied. With increasing Na content in the ZSM-5 zeolite, the acid sites determined by NH3-TPD technique, especially the strong acid sites, clearly decrease. When used as catalyst for the aromatization reaction, the transformation of olefins in the FCC gasoline into aromatics is governed directly by the strong acid sites on the ZSM-5 catalyst. Only under the conditions that a ZSM-5 catalyst possesses suitable strong acid sites is reaction temperature favorable for the aromatics formed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new reaction mode, i.e., the combined single-pass conversion of methane via oxidative coupling (OCM) over mixed metal oxide (SLC) catalysts and dehydroaromatization (MDA) over Mo/HZSM-5 catalysts, is reported. With the assistance of an OCM reaction over SLC catalysts in the top layer of the reactor, the deactivation resistance of Mo/HZSM-5 catalysts is remarkably enhanced. Under the selected reaction conditions, the CH(4) conversion decreased from similar to18 to similar to1% and the aromatics yield decreased from 12.8 to 0.1%, respectively, after running the reaction for 960 min on both 6Mo/HZSM-5 and SLC-6Mo/HZSM-5 catalyst system without O(2) in the feed. On the other hand, for the SLC-6Mo/HZSM-5 catalyst system with O(2) in the feed, the deactivation was improved greatly, and after 960 min onstream the CH(4) conversion and aromatics yield were still as high as 12.0 and 8.0%, respectively. The promotion effect mainly appears to be associated with in situ formation of CO(2) in the OCM layer, which reacts with coke via the reverse Boudouard reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct conversion of methane into hydrogen and valuable chemicals under nonoxidative conditions is a process severely limited thermodynamically. However, the movement from the present era of fossil fuels into the coming hydrogen energy age makes it an interesting and important approach compared with the direct conversion of methane under the aid of oxidants. This paper gives a brief overview of the direct conversion of CH4 under nonoxidative conditions. At the same time, our understanding of methane dehydroaromatization over Mo/HZSM-5 catalysts for the simultaneous formation of hydrogen and light aromatics is discussed in general, while the bifunctionality of Mo/HZSM-5 catalysts and the role of carbonaceous deposits formed during the reaction are reviewed in more detail. A perspective of the topic from both academic points of view and potential industrial applications is also presented. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of K2CO3, TiO2 shows good catalytic activity and stability for the alcohols synthesis from CO and H2O. CO conversion of 7.6% and the STY of MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) are obtained under reaction conditions of T = 573 K, P = 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 h to 44 h time-on-stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linking organisms or groups of organisms to specific functions within natural environments is a fundamental challenge in microbial ecology. Advances in technology for manipulating and analyzing nucleic acids have made it possible to characterize the members of microbial communities without the intervention of laboratory culturing. Results from such studies have shown that the vast majority of soil organisms have never been cultured, highlighting the risks of culture-based approaches in community analysis. The development of culture-independent techniques for following the flow of substrates through microbial communities therefore represents an important advance. These techniques, collectively known as stable isotope probing (SIP), involve introducing a stable isotope-labeled substrate into a microbial community and following the fate of the substrate by extracting diagnostic molecular species such as fatty acids and nucleic acids from the community and determining which specific molecules have incorporated the isotope. The molecules in which the isotope label appears provide identifying information about the organism that incorporated the substrate. Stable isotope probing allows direct observations of substrate assimilation in minimally disturbed communities, and thus represents an exciting new tool for linking microbial identity and function. The use of lipids or nucleic acids as the diagnostic molecule brings different strengths and weaknesses to the experimental approach, and necessitates the use of significantly different instrumentation and analytical techniques. This short review provides an overview of the lipid and nucleic acid approaches, discusses their strengths and weaknesses, gives examples of applications in various settings, and looks at prospects for the future of SIP technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以广西西北部喀斯特地区的开垦草地生态系为对象,研究了草地开垦变为不同农田后对土壤有机碳库的效应。结果表明,草地开垦为农田后,土壤可溶性有机碳、微生物生物量碳及总有机碳的含量显著下降。自然草地开垦后,柑桔地土壤有机碳含量高于农作用地土壤。玉米与甘蔗轮作土壤有机碳含量高于甘蔗连作。13C示踪结果表明,柑桔地土壤有机碳中来源于草地的含量高于农田土壤;农田土壤有机碳中来源于草地的随种植年限的增加而降低。在玉米与甘蔗轮作的农田中,土壤有机碳中来源于玉米的高于甘蔗连作土壤有机碳中来源于甘蔗的。