589 resultados para microRNA(miRNA)
Resumo:
Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy.
Resumo:
OBJECTIVES:There is no "gold standard" for assessing disease activity in patients with eosinophilic esophagitis (EoE). We aimed to compare physicians' judgment of EoE activity with patients' judgment of symptom severity. We also aimed to examine the relative contribution of symptoms as well as endoscopic and histologic findings in shaping physicians' judgment of EoE activity.METHODS:Six gastroenterologists (all EoE experts) assessed EoE-associated symptoms in adult patients. Patients completed a symptom instrument and provided global assessment of EoE symptom severity (PatGA) (Likert scale: 0 (inactive) to 10 (most active)). Following esophagogastroduodenoscopy with biopsy sampling, gastroenterologists provided a global assessment of EoE activity (PhysGA) (Likert scale from 0 to 10) based on patient history and endoscopic and histologic findings. Linear regression and analysis of variance was used to quantify the extent to which variations in severity of EoE symptoms and endoscopic and histologic findings explain variations in PhysGA.RESULTS:A total of 149 EoE patients were prospectively included (71.8% male, median age at inclusion 38 years, 71.8% with concomitant allergies). A moderate positive correlation between PhysGA and PatGA (rho=0.442, P<0.001) was observed and the mean difference in the Bland-Altman plot was 1.77. Variations in severity of endoscopic findings, symptoms, and histologic findings alone explained 53%, 49%, and 30%, of the variability in PhysGA, respectively. Together, these findings explained 75% of variability in PhysGA.CONCLUSIONS:Gastroenterologists rate EoE activity mainly on the basis of endoscopic findings and symptoms and, to a lesser extent, on histologic findings.Am J Gastroenterol advance online publication, 3 March 2015; doi:10.1038/ajg.2015.32.
Resumo:
Successful myeloid differentiation depends on the expression of a series of miRNAs. Thus, it is hardly surprising that miRNAs are globally repressed in AML, a disease mainly characterized by a block in cellular myeloid differentiation. Studies investigating the mechanisms for low miRNA expression in AML has mostly focused on altered transcriptional regulation or deletions, whereas defective miRNA processing has received less attention. In this study, we report that the expression of the key miRNA processing enzyme DICER1 is down-regulated in primary AML patient samples and healthy CD34(+) progenitor cells as compared with granulocytes. In line with these findings, Dicer1 expression was induced significantly in AML cell lines upon neutrophil differentiation. The knocking down of DICER1 in AML cells significantly attenuated neutrophil differentiation, which was paralleled by decreased expression of miRNAs involved in this process. Moreover, we found that inhibiting DICER1 attenuated the activation of autophagy, a cellular recycling process that is needed for proper neutrophil differentiation of AML cells. Our results clearly indicate that DICER1 plays a novel role in neutrophil differentiation as well as in myeloid autophagy of AML cells.
Resumo:
PURPOSE The microRNA miR-27a was recently shown to directly regulate dihydropyrimidine dehydrogenase (DPD), the key enzyme in fluoropyrimidine catabolism. A common polymorphism (rs895819A>G) in the miR-27a genomic region (MIR27A) was associated with reduced DPD activity in healthy volunteers, but the clinical relevance of this effect is still unknown. Here, we assessed the association of MIR27A germline variants with early-onset fluoropyrimidine toxicity. EXPERIMENTAL DESIGN MIR27A was sequenced in 514 patients with cancer receiving fluoropyrimidine-based chemotherapy. Associations of MIR27A polymorphisms with early-onset (cycles 1-2) fluoropyrimidine toxicity were assessed in the context of known risk variants in the DPD gene (DPYD) and additional covariates associated with toxicity. RESULTS The association of rs895819A>G with early-onset fluoropyrimidine toxicity was strongly dependent on DPYD risk variant carrier status (Pinteraction = 0.0025). In patients carrying DPYD risk variants, rs895819G was associated with a strongly increased toxicity risk [OR, 7.6; 95% confidence interval (CI), 1.7-34.7; P = 0.0085]. Overall, 71% (12/17) of patients who carried both rs895819G and a DPYD risk variant experienced severe toxicity. In patients without DPYD risk variants, rs895819G was associated with a modest decrease in toxicity risk (OR, 0.62; 95% CI, 0.43-0.9; P = 0.012). CONCLUSIONS These results indicate that miR-27a and rs895819A>G may be clinically relevant for further toxicity risk stratification in carriers of DPYD risk variants. Our data suggest that direct suppression of DPD by miR-27a is primarily relevant in the context of fluoropyrimidine toxicity in patients with reduced DPD activity. However, miR-27a regulation of additional targets may outweigh its effect on DPD in patients without DPYD risk variants.
Resumo:
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Resumo:
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
Resumo:
BACKGROUND & AIMS It is not clear whether symptoms alone can be used to estimate the biologic activity of eosinophilic esophagitis (EoE). We aimed to evaluate whether symptoms can be used to identify patients with endoscopic and histologic features of remission. METHODS Between April 2011 and June 2014, we performed a prospective, observational study and recruited 269 consecutive adults with EoE (67% male; median age, 39 years old) in Switzerland and the United States. Patients first completed the validated symptom-based EoE activity index patient-reported outcome instrument and then underwent esophagogastroduodenoscopy with esophageal biopsy collection. Endoscopic and histologic findings were evaluated with a validated grading system and standardized instrument, respectively. Clinical remission was defined as symptom score <20 (range, 0-100); histologic remission was defined as a peak count of <20 eosinophils/mm(2) in a high-power field (corresponds to approximately <5 eosinophils/median high-power field); and endoscopic remission as absence of white exudates, moderate or severe rings, strictures, or combination of furrows and edema. We used receiver operating characteristic analysis to determine the best symptom score cutoff values for detection of remission. RESULTS Of the study subjects, 111 were in clinical remission (41.3%), 79 were in endoscopic remission (29.7%), and 75 were in histologic remission (27.9%). When the symptom score was used as a continuous variable, patients in endoscopic, histologic, and combined (endoscopic and histologic remission) remission were detected with area under the curve values of 0.67, 0.60, and 0.67, respectively. A symptom score of 20 identified patients in endoscopic remission with 65.1% accuracy and histologic remission with 62.1% accuracy; a symptom score of 15 identified patients with both types of remission with 67.7% accuracy. CONCLUSIONS In patients with EoE, endoscopic or histologic remission can be identified with only modest accuracy based on symptoms alone. At any given time, physicians cannot rely on lack of symptoms to make assumptions about lack of biologic disease activity in adults with EoE. ClinicalTrials.gov, Number: NCT00939263.
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.
Resumo:
Endometriosis affects approximately 15% of reproductive aged women and is associated with chronic pelvic pain and infertility. However, the molecular mechanisms by which endometriosis impacts fertility are poorly understood. The developmentally regulated, imprinted H19 long noncoding RNA (lncRNA) functions to reduce the bioavailability of microRNA let-7 by acting as a molecular sponge. Here we report that H19 expression is significantly decreased in the eutopic endometrium of women with endometriosis as compared to normal controls. We show that decreased H19 increases let-7 activity, which in turn inhibits Igf1r expression at the post-transcriptional level, thereby contributing to reduced proliferation of endometrial stromal cells. We propose that perturbation of this newly identified H19/Let-7/IGF1R regulatory pathway may contribute to impaired endometrial preparation and receptivity for pregnancy in women with endometriosis. Our finding represents the first example of a lncRNA-based mechanism in endometriosis and its associated infertility, thus holding potential in the development of novel therapeutics for women with endometriosis and infertility.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.
Resumo:
Glioblastoma, also known as glioblastoma multiform or GBM, is the most common and most malignant primary brain tumor. The clinical history of patients with glioblastoma is short, usually less than 3 months in more than 50% of cases after diagnosis. Currently, the methods of glioblastoma treatment are chemotherapy, radiotherapy and surgery. Even with the more effective treatment options, patients with glioblastoma most likely have a median survival time of 10 to 12 months. It is necessary to seek other treatment methods, including gene-targeted treatment. The success of gene-targeted treatment depends critically on the knowledge of genes that may be the cause of, or contribute to disease. To establish a correlate between glioblastoma survival timeline and micro RNA expression alteration, a study of 91 glioblastoma patients was conducted at the University of Texas M. D. Anderson Cancer Center. These 91 glioblastoma patients were newly diagnosed from 2002 to 2007. Statistical analysis was conducted to test the association of miRNA expression alteration between long-term survival and short-term survival glioblastoma. The completion of this proposed study will provide a better understanding of the regulatory role of miRNA in glioblastoma progression.^
Resumo:
Ovarian cancer is the leading cause of cancer-related death for females due to lack of specific early detection method. It is of great interest to find molecular-based biomarkers which are sensitive and specific to ovarian cancer for early diagnosis, prognosis and therapeutics. miRNAs have been proposed to be potential biomarkers that could be used in cancer prevention and therapeutics. The current study analyzed the miRNA and mRNA expression data extracted from the Cancer Genome Atlas (TCGA) database. Using simple linear regression and multiple regression models, we found 71 miRNA-mRNA pairs which were negatively associated between 56 miRNAs and 24 genes of PI3K/AKT pathway. Among these miRNA and mRNA target pairs, 9 of them were in agreement with the predictions from the most commonly used target prediction programs including miRGen, miRDB, miRTarbase and miR2Disease. These shared miRNA-mRNA pairs were considered to be the most potential genes that were involved in ovarian cancer. Furthermore, 4 of the 9 target genes encode cell cycle or apoptosis related proteins including Cyclin D1, p21, FOXO1 and Bcl2, suggesting that their regulator miRNAs including miR-16, miR-96 and miR-21 most likely played important roles in promoting tumor growth through dysregulated cell cycle or apoptosis. miR-96 was also found to directly target IRS-1. In addition, the results showed that miR-17 and miR-9 may be involved in ovarian cancer through targeting JAK1. This study might provide evidence for using miRNA or miRNA profile as biomarker.^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition
Resumo:
It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.