991 resultados para medical implants
Resumo:
Importance of the field: Conventional dosing methods are frequently unable to deliver the clinical requirement of the patient. The ability to control the delivery of drugs from implanted materials is difficult to achieve, but offers promise in diverse areas such as infection-resistant medical devices and 10 responsive implants for diabetics. Areas covered in this review: This review gives a broad overview of recent progress in the use of triggers that can be used to achieve modulation of drug release rates from implantable biomaterials. In particular, these can be classified as being responsive to one or more of the following stimuli: a 15 chemical species, light, heat, magnetism, ultrasound and mechanical force. What the reader will gain: An overview of the potential for triggered drug delivery to give methods for tailoring the dose, location and time of release of a wide range of drugs where traditional dosing methods are not suitable. Particular emphasis is given to recently reported systems, and important 20 historical reports are included. Take home message: The use of externally or internally applied triggers of drug delivery to biomaterials has significant potential for improved delivery modalities and infection resistance.
Resumo:
Objective: This Student Selected Component (SSC) was designed to equip United Kingdom (UK) medical students to engage in whole-person care. The aim was to explore students' reactions to experiences provided, and consider potential benefits for future clinical practice.
Methods: The SSC was delivered in the workplace. Active learning was encouraged through facilitated discussion with and observation of clinicians, the palliative team, counselling services, hospital chaplaincy and healing ministries; sharing of medical histories by patients; and training in therapeutic communication. Assessment involved reflective journals, literature appraisal, and role-play simulation of the doctor-patient consultation. Module impact was evaluated by analysis of student coursework and a questionnaire.
Results: Students agreed that the content was stimulating, relevant, and enjoyable and that learning outcomes were achieved. They reported greater awareness of the benefit of clinicians engaging in care of the "whole person" rather than "the disease." Contributions of other professions to the healing process were acknowledged, and students felt better equipped for discussion of spiritual issues with patients. Many identified examples of activities which could be incorporated into core teaching to benefit all medical students.
Conclusion: The SSC provided relevant active learning opportunities for medical students to receive training in a whole-person approach to patient care.
Resumo:
This study reports the formulation/characterisation of novel polymeric platforms designed to behave as low-viscosity systems in the nonaqueous state, however, following uptake of aqueous ?uids, exhibit rheological structuring and mucoadhesion. The rheological/mechanical and mucoadhesive properties of platforms containing poly(acrylic acid) (PAA, 1%, 3%, 5%, w/w) and poloxamines (Tetronic 904, 901, 704, 701, 304), both in the absence and presence of phosphate buffered saline (PBS, pH 7.4) are described. With the exception of Tetronic 904, all formulations exhibited Newtonian ?ow in the nonaqueous state, whereas, all aqueous formulations displayed pseudoplastic ?ow. The consistency and viscoelastic properties were dependent on the concentrations of PAA and PBS and Tetronic grade. PBS signi?cantly increased the consistency, viscoelasticity and mucoadhesion, reaching a maximum at a de?ned concentration of PBS that was dependent on PAA concentration and Tetronic grade. Formulations containing Tetronic 904 exhibited greatest consistency and elasticity both prior to and after dilution with PBS. Increasing PAA concentration enhanced the mucoadhesive properties. Prolonged drug release of metronidazole was observed from formulations containing 10% (w/w) PBS, 3% and, particularly, 5% (w/w) PAA. It is suggested that the physicochemical properties of formulations containing 3% or 5% (w/w) PAA and Tetronic 904, would render them suitable platforms for administration to body cavities.
Resumo:
Silicone elastomer systems have been shown to offer potential for the fabrication of medical devices and sustained release drug delivery devices comprising low molecular weight drugs and protein therapeutics. For drug delivery systems in particular, there is often no clear rationale for selection of the silicone elastomer grade, particularly in respect of optimizing the manufacturing conditions to ensure thermal stability of the active agent and short cycle times. In this study, the cure characteristics of a range of addition-cure and condensation-cure, low-consistency, implant-grade silicone elastomers, either as supplied or loaded with the model protein bovine serum albumin (BSA) and the model hydrophilic excipient glycine, were investigated using oscillatory rheology with a view to better understanding the isothermal cure characteristics. The results demonstrate the influence of elastomer type, cure temperature, protein loading, and glycine loading on isothermal cure properties. By measuring the cure time required to achieve tan delta values representative of early and late-stage cure conditions, a ratio t(1)/t(2) was defined that allowed the cure characteristics of the various systems to be compared. Sustained in vitro release of BSA from glycine-loaded silicone elastomer covered rod devices was also demonstrated over 14 days. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 2320-2327, 2010