993 resultados para mass selection
Resumo:
2
Resumo:
1
Resumo:
AbstractBackground:Guidelines recommend that in suspected stable coronary artery disease (CAD), a clinical (non-invasive) evaluation should be performed before coronary angiography.Objective:We assessed the efficacy of patient selection for coronary angiography in suspected stable CAD.Methods:We prospectively selected consecutive patients without known CAD, referred to a high-volume tertiary center. Demographic characteristics, risk factors, symptoms and non-invasive test results were correlated to the presence of obstructive CAD. We estimated the CAD probability based on available clinical data and the incremental diagnostic value of previous non-invasive tests.Results:A total of 830 patients were included; median age was 61 years, 49.3% were males, 81% had hypertension and 35.5% were diabetics. Non-invasive tests were performed in 64.8% of the patients. At coronary angiography, 23.8% of the patients had obstructive CAD. The independent predictors for obstructive CAD were: male gender (odds ratio [OR], 3.95; confidence interval [CI] 95%, 2.70 - 5.77), age (OR for 5 years increment, 1.15; CI 95%, 1.06 - 1.26), diabetes (OR, 2.01; CI 95%, 1.40 - 2.90), dyslipidemia (OR, 2.02; CI 95%, 1.32 - 3.07), typical angina (OR, 2.92; CI 95%, 1.77 - 4.83) and previous non-invasive test (OR 1.54; CI 95% 1.05 - 2.27).Conclusions:In this study, less than a quarter of the patients referred for coronary angiography with suspected CAD had the diagnosis confirmed. A better clinical and non-invasive assessment is necessary, to improve the efficacy of patient selection for coronary angiography.
Resumo:
1
Resumo:
1
Resumo:
2
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.