972 resultados para margin
Resumo:
Late Weichselian and Holocene dinoflagellate cyst assemblages have been investigated at two stations situated close to the modern Polar Front at the continental margin oft East Greenland. Both the concentrations of dinoflagelate cysts and the assemblage composition reflect changes in the surface water conditions, occurring in distinct steps during the past 15,000 years. Low concentrations of dinoflagellate cysts during Termination Ia suggest harsh environmental conditions, most probably caused by an extensive sea-ice cover and/or a high influx of low salinity meltwater. A surface water warming was recorded from 13,000 - 12,000 years BP, related to the inflow of warmer water trom the North Atlantic into the western Norwegian-Greenland Sea. The interval between Terminations la and Ib was characterized by a strong seasonality with an extensive sea-ice cover in winter and relatively warm surface waters in summer. At the transition to the Holocene, a reorganisation of the hydrography resulted in surface water conditions characteristic for the Holocene with three well-defined major water masses and oceanographic fronts The modern water mass conditions at both stations were established at the end of Termination Ib, around 6,400 to 6,800 years BP. In general, the influence of colder surface waters was more pronounced at the location off Scoresby Sund throughout the Holocene. Arctic water had the strongest influence at both stations in the middle Holocene. A progressive cooling with an increase in sea-ice cover is time-transgressivelyrecorded at both stations during the Holocene, indicating that the Polar Front moved to its present position or that branches of the zonal currents expanded from the East Greenland shell eastward during tlie last 3,000 years.
Resumo:
Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
Resumo:
A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.
Resumo:
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data. Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events. In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.
Resumo:
Deep Sea Drilling Project Leg 79 recovered Cretaceous nannofossils at two localities, Sites 545 and 547. Species diversity of the Cretaceous coccoliths is high, and the assemblages range in age from early Valanginian-early Hauterivian to latest Maestrichtian. Site 545 and portions of Site 547 can be combined to form a composite section ranging from the upper Aptian-lower Albian to the middle to upper Cenomanian. As defined by nannofossil events, this section represents a complete record of sedimentary deposition. The interval appears to be the most extensive and complete Cretaceous section yet drilled off the Northwest African margin. The Campanian and Maestrichtian sediments found at Site 547 (Hole 547A) are the youngest Cretaceous strata found on the Northwest African margin. Like the middle Cretaceous sections, the uppermost Maestrichtian of this interval also represents a complete record of sedimentation.