963 resultados para leaf tissue density
Resumo:
This study demonstrates the feasibility of additive manufactured poly(3-caprolactone)/silanized tricalcium phosphate (PCL/TCP(Si)) scaffolds coated with carbonated hydroxyapatite (CHA)-gelatin composite for bone tissue engineering. In order to reinforce PCL/TCP scaffolds to match the mechanical properties of cancellous bone, TCP has been modified with 3-glycidoxypropyl trimethoxysilane (GPTMS) and incorporated into PCL to synthesize a PCL/TCP(Si) composite. The successful modification is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Additive manufactured PCL/TCP(Si) scaffolds have been fabricated using a screw extrusion system (SES). Compression testing demonstrates that both the compressive modulus and compressive yield strength of the developed PCL/TCP(Si) scaffolds fall within the lower ranges of mechanical properties for cancellous bone, with a compressive modulus and compressive yield strength of 6.0 times and 2.3 times of those of PCL/TCP scaffolds, respectively. To enhance the osteoconductive property of the developed PCL/TCP(Si) scaffolds, a CHA-gelatin composite has been coated onto the scaffolds via a biomimetic co-precipitation process, which is verified by using scanning electron microscopy (SEM) and XPS. Confocal laser microscopy and SEM images reveal a most uniform distribution of porcine bone marrow stromal cells (BMSCs) and cellsheet accumulation on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds. The proliferation rate of BMSCs on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds is 2.0 and 1.4 times higher compared to PCL/TCP(Si) and CHA coated PCL/TCP(Si) scaffolds, respectively, by day 10. Furthermore, the reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses reveal that CHA-gelatin composite coated PCL/TCP(Si) scaffolds stimulate osteogenic differentiation of BMSCs the most compared to the other scaffolds. In vitro results of SEM, confocal microscopy and proliferation rate also show that there is no detrimental effect of GPTMS modification on biocompatibility of the scaffolds.
Resumo:
BACKGROUND - High-density lipoprotein (HDL) protects against arterial atherothrombosis, but it is unknown whether it protects against recurrent venous thromboembolism. METHODS AND RESULTS - We studied 772 patients after a first spontaneous venous thromboembolism (average follow-up 48 months) and recorded the end point of symptomatic recurrent venous thromboembolism, which developed in 100 of the 772 patients. The relationship between plasma lipoprotein parameters and recurrence was evaluated. Plasma apolipoproteins AI and B were measured by immunoassays for all subjects. Compared with those without recurrence, patients with recurrence had lower mean (±SD) levels of apolipoprotein AI (1.12±0.22 versus 1.23±0.27 mg/mL, P<0.001) but similar apolipoprotein B levels. The relative risk of recurrence was 0.87 (95% CI, 0.80 to 0.94) for each increase of 0.1 mg/mL in plasma apolipoprotein AI. Compared with patients with apolipoprotein AI levels in the lowest tertile (<1.07 mg/mL), the relative risk of recurrence was 0.46 (95% CI, 0.27 to 0.77) for the highest-tertile patients (apolipoprotein AI >1.30 mg/mL) and 0.78 (95% CI, 0.50 to 1.22) for midtertile patients (apolipoprotein AI of 1.07 to 1.30 mg/mL). Using nuclear magnetic resonance, we determined the levels of 10 major lipoprotein subclasses and HDL cholesterol for 71 patients with recurrence and 142 matched patients without recurrence. We found a strong trend for association between recurrence and low levels of HDL particles and HDL cholesterol. CONCLUSIONS - Patients with high levels of apolipoprotein AI and HDL have a decreased risk of recurrent venous thromboembolism. © 2007 American Heart Association, Inc.
Resumo:
Background-Although dyslipoproteinemia is associated with arterial atherothrombosis, little is known about plasma lipoproteins in venous thrombosis patients. Methods and Results-We determined plasma lipoprotein subclass concentrations using nuclear magnetic resonance spectroscopy and antigenic levels of apolipoproteins AI and B in blood samples from 49 male venous thrombosis patients and matched controls aged <55 years. Venous thrombosis patients had significantly lower levels of HDL particles, large HDL particles, HDL cholesterol, and apolipoprotein AI and significantly higher levels of LDL particles and small LDL particles. The quartile-based odds ratios for decreased HDL particle and apolipoprotein AI levels in patients compared with controls were 6.5 and 6.0 (95% CI, 2.3 to 19 and 2.1 to 17), respectively. Odds ratios for apolipoprotein B/apolipoprotein AI ratio and LDL cholesterol/HDL cholesterol ratio were 6.3 and 2.7 (95% CI, 1.9 to 21 and 1.1 to 6.5), respectively. When polymorphisms in genes for hepatic lipase, endothelial lipase, and cholesteryl ester transfer protein were analyzed, patients differed significantly from controls in the allelic frequency for the TaqI B1/B2 polymorphism in cholesteryl ester transfer protein, consistent with the observed pattern of lower HDL and higher LDL. Conclusions-Venous thrombosis in men aged <55 years old is associated with dyslipoproteinemia involving lower levels of HDL particles, elevated levels of small LDL particles, and an elevated ratio of apolipoprotein B/apolipoprotein AI. This dyslipoproteinemia seems associated with a related cholesteryl ester transfer protein genotype difference. © 2005 American Heart Association, Inc.