916 resultados para lamb crop
Resumo:
Canopy characterization is essential for describing the interaction of a crop with its environment. The goal of this work was to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop, and to assess the feasibility of using these relationships as well as LAI-2000 readings to estimate LAI. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. Linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI mayor que 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley.
Resumo:
Field studies were conducted in walk-in tunnels to determine the flying capacity in the presence and absence of crop, of the parasitoid Psyttalia concolor and the predator Chrysoperla carnea under a UV-absorbent net (Bionet®). Yellow sticky cards were used for insect recovery but neither P. concolor nor C. carnea were very attracted to them, thus captures were too low to permit any meaningful comparisons. Bionet® did not seem to affect the mobility of any natural enemy irrespective of the trap location and monitoring hour. Climatic conditions inside nets were very extreme (average temperatures very high and relative humidity very low) threatening insect survival. New experiments are being developed, trying to find new attractants that permit a significant capture of both natural enemies.
Resumo:
No tillage, minimum tillage and conventional tillage practices are commonly used in maize crops in Alentejo, affecting soil physic conditions and determining seeders performance. Seeders distribution can be evaluated in the longitudinal and vertical planes. Vertical plane is specified by seeding depth (Karayel et al., 2008). If, in one hand seeding depth uniformity is a goal for all crop establishment , in the other hand, seeders furrow openers depth control is never constant depending on soil conditions. Seed depth uniformity affects crop emergence, Liu et al. (2004) showed an higher correlation between crop productivity and emergence uniformity than with longitudinal plants distribution. Neto et al. (2007) evaluating seed depth placement by measuring maize mesocotyl length under no tillage conditions in 38 farms concluded that 20% of coefficient of variation suggests the need of improvement seeders depth control mechanisms. The objective of this study was to evaluate casual relationships and create spatial variability maps between soil mechanic resistance and vertical distribution under three different soil practices to improve seed depth uniformity.
Resumo:
This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of three main processes: image segmentation, double thresholding, based on the Otsu’s method, and crop row detection. Image segmentation is based on the application of a vegetation index, the double thresholding achieves the separation between weeds and crops and the crop row detection applies least squares linear regression for line adjustment. Crop and weed separation becomes effective and the crop row detection can be favorably compared against the classical approach based on the Hough transform. Both gain effectiveness and accuracy thanks to the double thresholding that makes the main finding of the paper.
Resumo:
This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection.
Resumo:
Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.
Resumo:
Rising water demands are difficult to meet in many regions of the world. In consequence, under meteorological adverse conditions, big economic losses in agriculture can take place. This paper aims to analyze the variability of water shortage in an irrigation district and the effect on farmer?s income. A probabilistic analysis of water availability for agriculture in the irrigation district is performed, through a supply-system simulation approach, considering stochastically generated series of stream-flows. Net margins associated to crop production are as well estimated depending on final water allocations. Net margins are calculated considering either single-crop farming, either a polyculture system. In a polyculture system, crop distribution and water redistribution are calculated through an optimization approach using the General Algebraic Modeling System (GAMS) for several scenarios of irrigation water availability. Expected net margins are obtained by crop and for the optimal crop and water distribution. The maximum expected margins are obtained for the optimal crop combination, followed by the alfalfa monoculture, maize, rice, wheat and finally barley. Water is distributed as follows, from biggest to smallest allocation: rice, alfalfa, maize, wheat and barley.
Resumo:
Nitrate leaching (NL) is an important N loss process in irrigated agriculture that imposes a cost on the farmer and the environment. A meta-analysis of published experimental results from agricultural irrigated systems was conducted to identify those strategies that have proven effective at reducing NL and to quantify the scale of reduction that can be achieved. Forty-four scientific articles were identified which investigated four main strategies (water and fertilizer management, use of cover crops and fertilizer technology) creating a database with 279 observations on NL and 166 on crop yield. Management practices that adjust water application to crop needs reduced NL by a mean of 80% without a reduction in crop yield. Improved fertilizer management reduced NL by 40%, and the best relationship between yield and NL was obtained when applying the recommended fertilizer rate. Replacing a fallow with a non-legume cover crop reduced NL by 50% while using a legume did not have any effect on NL. Improved fertilizer technology also decreased NL but was the least effective of the selected strategies. The risk of nitrate leaching from irrigated systems is high, but optimum management practices may mitigate this risk and maintain crop yields while enhancing environmental sustainability.
Resumo:
Current studies about nitrous oxide (N2O) emissions from legume crops have raised considerable doubt, observing a high variability between sites (0.03-7.09 kg N2O–N ha−1 y -1) [1]. This high variability has been associated to climate and soil conditions, legume species and soil management practices (e.g. conservation or conventional tillage). Conservation tillage (i.e. no tillage (NT) and minimum tillage (MT)) has spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion and enhancement of carbon (C) sequestration). However, these benefits could be partly counterbalanced by negative effects on the release of N2O emissions. Among processes responsible for N2O production and consumption in soils, denitrification plays an importantrole both in tilled and no-tilled ropping systems [2]. Recently, amplification of functional bacterial genes involved in denitrification is being used to examine denitrifiers abundance and evaluate their influence on N2O emissions. NirK and nirS are functional genes encoding the cytochrome cd1 and copper nitrite reductase, which is the key enzyme regulating the denitrification process.
Resumo:
Application of nitrogen (N) fertilizers in agricultural soils increases the risk of N loss to the atmosphere in the form of ammonia (NH3), nitrous oxide (N2O) and nitric oxide (NO)and the water bodies as nitrate (NO3-). The implementation of agricultural management practices can affect these losses. In Mediterranean irrigation systems, the greatest losses of NO3-through leaching occur within the irrigation and the intercropperiod. One way to abate these losses during the intercrop period is the use of cover crops that absorb part of the residual N from the root zone (Gabriel and Quemada, 2011). Moreover, during the following crop, these species could be applied as amendments to the soil, providing both C and N to the soil. This effect of cover and catch crops on decreasing the pool of N potentially lost has focused primarily on NO3-leaching. The aim of this work was to evaluate the effect of cover crops on N2O emission during the in tercrop period in a maize system and its subsequent incorporation into the soil in the following maize crop.
Resumo:
El óxido nitroso (N2O) es un potente gas de efecto invernadero (GHG) proveniente mayoritariamente de la fertilización nitrogenada de los suelos agrícolas. Identificar estrategias de manejo de la fertilización que reduzcan estas emisiones sin suponer un descenso de los rendimientos es vital tanto a nivel económico como medioambiental. Con ese propósito, en esta Tesis se han evaluado: (i) estrategias de manejo directo de la fertilización (inhibidores de la nitrificación/ureasa); y (ii) interacciones de los fertilizantes con (1) el manejo del agua, (2) residuos de cosecha y (3) diferentes especies de plantas. Para conseguirlo se llevaron a cabo meta-análisis, incubaciones de laboratorio, ensayos en invernadero y experimentos de campo. Los inhibidores de la nitrificación y de la actividad ureasa se proponen habitualmente como medidas para reducir las pérdidas de nitrógeno (N), por lo que su aplicación estaría asociada al uso eficiente del N por parte de los cultivos (NUE). Sin embargo, su efecto sobre los rendimientos es variable. Con el objetivo de evaluar en una primera fase su efectividad para incrementar el NUE y la productividad de los cultivos, se llevó a cabo un meta-análisis. Los inhibidores de la nitrificación dicyandiamide (DCD) y 3,4-dimetilepyrazol phosphate (DMPP) y el inhibidor de la ureasa N-(n-butyl) thiophosphoric triamide (NBPT) fueron seleccionados para el análisis ya que generalmente son considerados las mejores opciones disponibles comercialmente. Nuestros resultados mostraron que su uso puede ser recomendado con el fin de incrementar tanto el rendimiento del cultivo como el NUE (incremento medio del 7.5% y 12.9%, respectivamente). Sin embargo, se observó que su efectividad depende en gran medida de los factores medioambientales y de manejo de los estudios evaluados. Una mayor respuesta fue encontrada en suelos de textura gruesa, sistemas irrigados y/o en cultivos que reciben altas tasas de fertilizante nitrogenado. En suelos alcalinos (pH ≥ 8), el inhibidor de la ureasa NBPT produjo el mayor efecto. Dado que su uso representa un coste adicional para los agricultores, entender las mejores prácticas que permitan maximizar su efectividad es necesario para posteriormente realizar comparaciones efectivas con otras prácticas que incrementen la productividad de los cultivos y el NUE. En base a los resultados del meta-análisis, se seleccionó el NBPT como un inhibidor con gran potencial. Inicialmente desarrollado para reducir la volatilización de amoniaco (NH3), en los últimos años algunos investigadores han demostrado en estudios de campo un efecto mitigador de este inhibidor sobre las pérdidas de N2O provenientes de suelos fertilizados bajo condiciones de baja humedad del suelo. Dada la alta variabilidad de los experimentos de campo, donde la humedad del suelo cambia rápidamente, ha sido imposible entender mecanísticamente el potencial de los inhibidores de la ureasa (UIs) para reducir emisiones de N2O y su dependencia con respecto al porcentaje de poros llenos de agua del suelo (WFPS). Por lo tanto se realizó una incubación en laboratorio con el propósito de evaluar cuál es el principal mecanismo biótico tras las emisiones de N2O cuando se aplican UIs bajo diferentes condiciones de humedad del suelo (40, 60 y 80% WFPS), y para analizar hasta qué punto el WFPS regula el efecto del inhibidor sobre las emisiones de N2O. Un segundo UI (i.e. PPDA) fue utilizado para comparar el efecto del NBPT con el de otro inhibidor de la ureasa disponible comercialmente; esto nos permitió comprobar si el efecto de NBPT es específico de ese inhibidor o no. Las emisiones de N2O al 40% WFPS fueron despreciables, siendo significativamente más bajas que las de todos los tratamientos fertilizantes al 60 y 80% WFPS. Comparado con la urea sin inhibidor, NBPT+U redujo las emisiones de N2O al 60% WFPS pero no tuvo efecto al 80% WFPS. La aplicación de PPDA incrementó significativamente las emisiones con respecto a la urea al 80% WFPS mientras que no se encontró un efecto significativo al 60% WFPS. Al 80% WFPS la desnitrificación fue la principal fuente de las emisiones de N2O en todos los tratamientos mientras que al 60% tanto la nitrificación como la desnitrificación tuvieron un papel relevante. Estos resultados muestran que un correcto manejo del NBPT puede suponer una estrategia efectiva para mitigar las emisiones de N2O. Con el objetivo de trasladar nuestros resultados de los estudios previos a condiciones de campo reales, se desarrolló un experimento en el que se evaluó la efectividad del NBPT para reducir pérdidas de N y aumentar la productividad durante un cultivo de cebada (Hordeum vulgare L.) en secano Mediterráneo. Se determinó el rendimiento del cultivo, las concentraciones de N mineral del suelo, el carbono orgánico disuelto (DOC), el potencial de desnitrificación, y los flujos de NH3, N2O y óxido nítrico (NO). La adición del inhibidor redujo las emisiones de NH3 durante los 30 días posteriores a la aplicación de urea en un 58% y las emisiones netas de N2O y NO durante los 95 días posteriores a la aplicación de urea en un 86 y 88%, respectivamente. El uso de NBPT también incrementó el rendimiento en grano en un 5% y el consumo de N en un 6%, aunque ninguno de estos incrementos fue estadísticamente significativo. Bajo las condiciones experimentales dadas, estos resultados demuestran el potencial del inhibidor de la ureasa NBPT para mitigar las emisiones de NH3, N2O y NO provenientes de suelos arables fertilizados con urea, mediante la ralentización de la hidrólisis de la urea y posterior liberación de menores concentraciones de NH4 + a la capa superior del suelo. El riego por goteo combinado con la aplicación dividida de fertilizante nitrogenado disuelto en el agua de riego (i.e. fertirriego por goteo) se considera normalmente una práctica eficiente para el uso del agua y de los nutrientes. Algunos de los principales factores (WFPS, NH4 + y NO3 -) que regulan las emisiones de GHGs (i.e. N2O, CO2 y CH4) y NO pueden ser fácilmente manipulados por medio del fertirriego por goteo sin que se generen disminuciones del rendimiento. Con ese propósito se evaluaron opciones de manejo para reducir estas emisiones en un experimento de campo durante un cultivo de melón (Cucumis melo L.). Los tratamientos incluyeron distintas frecuencias de riego (semanal/diario) y tipos de fertilizantes nitrogenados (urea/nitrato cálcico) aplicados por fertirriego. Fertirrigar con urea en lugar de nitrato cálcico aumentó las emisiones de N2O y NO por un factor de 2.4 y 2.9, respectivamente (P < 0.005). El riego diario redujo las emisiones de NO un 42% (P < 0.005) pero aumentó las emisiones de CO2 un 21% (P < 0.05) comparado con el riego semanal. Analizando el Poder de Calentamiento global en base al rendimiento así como los factores de emisión del NO, concluimos que el fertirriego semanal con un fertilizante de tipo nítrico es la mejor opción para combinar productividad agronómica con sostenibilidad medioambiental en este tipo de agroecosistemas. Los suelos agrícolas en las áreas semiáridas Mediterráneas se caracterizan por su bajo contenido en materia orgánica y bajos niveles de fertilidad. La aplicación de residuos de cosecha y/o abonos es una alternativa sostenible y eficiente desde el punto de vista económico para superar este problema. Sin embargo, estas prácticas podrían inducir cambios importantes en las emisiones de N2O de estos agroecosistemas, con impactos adicionales en las emisiones de CO2. En este contexto se llevó a cabo un experimento de campo durante un cultivo de cebada (Hordeum vulgare L.) bajo condiciones Mediterráneas para evaluar el efecto de combinar residuos de cosecha de maíz con distintos inputs de fertilizantes nitrogenados (purín de cerdo y/o urea) en estas emisiones. La incorporación de rastrojo de maíz incrementó las emisiones de N2O durante el periodo experimental un 105%. Sin embargo, las emisiones de NO se redujeron significativamente en las parcelas enmendadas con rastrojo. La sustitución parcial de urea por purín de cerdo redujo las emisiones netas de N2O un 46 y 39%, con y sin incorporación de residuo de cosecha respectivamente. Las emisiones netas de NO se redujeron un 38 y un 17% para estos mismos tratamientos. El ratio molar DOC:NO3 - demostró predecir consistentemente las emisiones de N2O y NO. El efecto principal de la interacción entre el fertilizante nitrogenado y el rastrojo de maíz se dio a los 4-6 meses de su aplicación, generando un aumento del N2O y una disminución del NO. La sustitución de urea por purín de cerdo puede considerarse una buena estrategia de manejo dado que el uso de este residuo orgánico redujo las emisiones de óxidos de N. Los pastos de todo el mundo proveen numerosos servicios ecosistémicos pero también suponen una importante fuente de emisión de N2O, especialmente en respuesta a la deposición de N proveniente del ganado mientras pasta. Para explorar el papel de las plantas como mediadoras de estas emisiones, se analizó si las emisiones de N2O dependen de la riqueza en especies herbáceas y/o de la composición específica de especies, en ausencia y presencia de una deposición de orina. Las hipótesis fueron: 1) las emisiones de N2O tienen una relación negativa con la productividad de las plantas; 2) mezclas de cuatro especies generan menores emisiones que monocultivos (dado que su productividad será mayor); 3) las emisiones son menores en combinaciones de especies con distinta morfología radicular y alta biomasa de raíz; y 4) la identidad de las especies clave para reducir el N2O depende de si hay orina o no. Se establecieron monocultivos y mezclas de dos y cuatro especies comunes en pastos con rasgos funcionales divergentes: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) y Poa trivialis L. (Pt), y se cuantificaron las emisiones de N2O durante 42 días. No se encontró relación entre la riqueza en especies y las emisiones de N2O. Sin embargo, estas emisiones fueron significativamente menores en ciertas combinaciones de especies. En ausencia de orina, las comunidades de plantas Fa+Php actuaron como un sumidero de N2O, mientras que los monocultivos de estas especies constituyeron una fuente de N2O. Con aplicación de orina la comunidad Lp+Pt redujo (P < 0.001) las emisiones de N2O un 44% comparado con los monocultivos de Lp. Las reducciones de N2O encontradas en ciertas combinaciones de especies pudieron explicarse por una productividad total mayor y por una complementariedad en la morfología radicular. Este estudio muestra que la composición de especies herbáceas es un componente clave que define las emisiones de N2O de los ecosistemas de pasto. La selección de combinaciones de plantas específicas en base a la deposición de N esperada puede, por lo tanto, ser clave para la mitigación de las emisiones de N2O. ABSTRACT Nitrous oxide (N2O) is a potent greenhouse gas (GHG) directly linked to applications of nitrogen (N) fertilizers to agricultural soils. Identifying mitigation strategies for these emissions based on fertilizer management without incurring in yield penalties is of economic and environmental concern. With that aim, this Thesis evaluated: (i) the use of nitrification and urease inhibitors; and (ii) interactions of N fertilizers with (1) water management, (2) crop residues and (3) plant species richness/identity. Meta-analysis, laboratory incubations, greenhouse mesocosm and field experiments were carried out in order to understand and develop effective mitigation strategies. Nitrification and urease inhibitors are proposed as means to reduce N losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was initially conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly used nitrification inhibitors (dicyandiamide (DCD) and 3,4-dimethylepyrazole phosphate (DMPP)) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were selected for analysis as they are generally considered the best available options. Our results show that their use can be recommended in order to increase both crop yields and NUE (grand mean increase of 7.5% and 12.9%, respectively). However, their effectiveness was dependent on the environmental and management factors of the studies evaluated. Larger responses were found in coarse-textured soils, irrigated systems and/or crops receiving high nitrogen fertilizer rates. In alkaline soils (pH ≥ 8), the urease inhibitor NBPT produced the largest effect size. Given that their use represents an additional cost for farmers, understanding the best management practices to maximize their effectiveness is paramount to allow effective comparison with other practices that increase crop productivity and NUE. Based on the meta-analysis results, NBPT was identified as a mitigation option with large potential. Urease inhibitors (UIs) have shown to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, however, some field researches have shown an effective mitigation of UIs over N2O losses from fertilized soils under conditions of low soil moisture. Given the inherent high variability of field experiments where soil moisture content changes rapidly, it has been impossible to mechanistically understand the potential of UIs to reduce N2O emissions and its dependency on the soil water-filled pore space (WFPS). An incubation experiment was carried out aiming to assess what is the main biotic mechanism behind N2O emission when UIs are applied under different soil moisture conditions (40, 60 and 80% WFPS), and to analyze to what extent the soil WFPS regulates the effect of the inhibitor over N2O emissions. A second UI (i.e. PPDA) was also used aiming to compare the effect of NBPT with that of another commercially available urease inhibitor; this allowed us to see if the effect of NBPT was inhibitor-specific or not. The N2O emissions at 40% WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80% WFPS. Compared to urea alone, NBPT+U reduced the N2O emissions at 60% WFPS but had no effect at 80% WFPS. The application of PPDA significantly increased the emissions with respect to U at 80% WFPS whereas no significant effect was found at 60% WFPS. At 80% WFPS denitrification was the main source of N2O emissions for all treatments. Both nitrification and denitrification had a determinant role on these emissions at 60% WFPS. These results suggest that adequate management of the UI NBPT can provide, under certain soil conditions, an opportunity for N2O mitigation. We translated our previous results to realistic field conditions by means of a field experiment with a barley crop (Hordeum vulgare L.) under rainfed Mediterranean conditions in which we evaluated the effectiveness of NBPT to reduce N losses and increase crop yields. Crop yield, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification potential, NH3, N2O and nitric oxide (NO) fluxes were measured during the growing season. The inclusion of the inhibitor reduced NH3 emissions in the 30 d following urea application by 58% and net N2O and NO emissions in the 95 d following urea application by 86 and 88%, respectively. NBPT addition also increased grain yield by 5% and N uptake by 6%, although neither increase was statistically significant. Under the experimental conditions presented here, these results demonstrate the potential of the urease inhibitor NBPT in abating NH3, N2O and NO emissions from arable soils fertilized with urea, slowing urea hydrolysis and releasing lower concentrations of NH4 + to the upper soil layer. Drip irrigation combined with split application of N fertilizer dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. Some of the main factors (WFPS, NH4 + and NO3 -) regulating the emissions of GHGs (i.e. N2O, carbon dioxide (CO2) and methane (CH4)) and NO can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations, N2O, NO, CH4, and CO2 fluxes were measured during the growing season. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. Based on yield-scaled Global Warming Potential as well as NO emission factors, we conclude that weekly fertigation with a NO3 --based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on CO2 emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions. Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season. The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO3 - ratio was found to be a robust predictor of N2O and NO fluxes. The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4-6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue. Grassland ecosystems worldwide provide many important ecosystem services but they also function as a major source of N2O, especially in response to N deposition by grazing animals. In order to explore the role of plants as mediators of these emissions, we tested whether and how N2O emissions are dependent on grass species richness and/or specific grass species composition in the absence and presence of urine deposition. We hypothesized that: 1) N2O emissions relate negatively to plant productivity; 2) four-species mixtures have lower emissions than monocultures (as they are expected to be more productive); 3) emissions are lowest in combinations of species with diverging root morphology and high root biomass; and 4) the identity of the key species that reduce N2O emissions is dependent on urine deposition. We established monocultures and two- and four-species mixtures of common grass species with diverging functional traits: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) and Poa trivialis L. (Pt), and quantified N2O emissions for 42 days. We found no relation between plant species richness and N2O emissions. However, N2O emissions were significantly reduced in specific plant species combinations. In the absence of urine, plant communities of Fa+Php acted as a sink for N2O, whereas the monocultures of these species constituted a N2O source. With urine application Lp+Pt plant communities reduced (P < 0.001) N2O emissions by 44% compared to monocultures of Lp. Reductions in N2O emissions by species mixtures could be explained by total biomass productivity and by complementarity in root morphology. Our study shows that plant species composition is a key component underlying N2O emissions from grassland ecosystems. Selection of specific grass species combinations in the context of the expected nitrogen deposition regimes may therefore provide a key management practice for mitigation of N2O emissions.
Resumo:
Resultados de la investigación sobre el valor nutritivo y calidad de la proteína de la alimentación basada en soja en función del origen y del año de la recolección.
Resumo:
Comments This article is a U.S. government work, and is not subject to copyright in the United States. Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha 1 per °C. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Resumo:
This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under image perspective projection. Because of the above undesired effects, most often, the estimation results inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge which is mapped into two modules based on image processing techniques. The first one is intended for separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based on the system geometry where the expected crop lines are mapped onto the image and then a correction is applied through the well-tested and robust Theil–Sen estimator in order to adjust them to the real ones. Its performance is favorably compared against the classical Pearson product–moment correlation coefficient.
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R 2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.