946 resultados para knowledge strategy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are working on the confluence of knowledge management, organizational memory and emergent knowledge with the lens of complex adaptive systems. In order to be fundamentally sustainable organizations search for an adaptive need for managing ambidexterity of day-to-day work and innovation. An organization is an entity of a systemic nature, composed of groups of people who interact to achieve common objectives, making it necessary to capture, store and share interactions knowledge with the organization, this knowledge can be generated in intra-organizational or inter-organizational level. The organizations have organizational memory of knowledge of supported on the Information technology and systems. Each organization, especially in times of uncertainty and radical changes, to meet the demands of the environment, needs timely and sized knowledge on the basis of tacit and explicit. This sizing is a learning process resulting from the interaction that emerges from the relationship between the tacit and explicit knowledge and which we are framing within an approach of Complex Adaptive Systems. The use of complex adaptive systems for building the emerging interdependent relationship, will produce emergent knowledge that will improve the organization unique developing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the effects of catalyst deactivation and investigates methods to reduce their impact on the reactive distillation columns performance. The use of variable feed quality and reboil ratio are investigated using a rigorous dynamic model developed in gPROMS and applied to an illustrative example, i.e., the olefin metathesis system, wherein 2-pentene reacts to form 2-butene and 3-hexene. Three designs and different strategies on column energy supply to tackle catalyst deactivation are investigated and the results compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo da pesquisa pretende verificar se há um contributo da formação em mediação no desenvolvimento de conhecimentos nessa área e na mudança de atitude nos Assistentes Operacionais (AO), face à resolução de conflitos entre alunos. Os recreios das escolas do 1.º Ciclo do Ensino Básico (1.ºCEB) são os locais onde ocorre a quase totalidade dos conflitos entre alunos (Fernández, 2007; Oliveira, 2007; Rosa, 2007). Esses recreios são supervisionados pelos AO, os quais devem ter formação específica em estratégias de resolução de conflitos. A mediação é apontada como a melhor estratégia na abordagem dos conflitos escolares, perspetivando melhoria na convivência escolar e na construção de um clima escolar positivo, propício à eficácia da educação. A estratégia de pesquisa baseia-se num estudo de intervenção com uma amostra de conveniência, simultaneamente qualitativo e quantitativo. Os dados foram recolhidos por questionário, por levantamento dos conhecimentos anteriores e posteriores à formação e por entrevistas aos participantes. No estudo participaram sete AO. Os resultados revelaram que os AO desenvolveram conhecimentos sobre mediação e percecionaram em si mesmos mudanças de atitude face à resolução de conflitos entre alunos. Os resultados ainda revelaram que os AO se sentem desvalorizados no meio escolar, mas motivados na interação com os alunos. Concluiu-se que a formação em mediação de conflitos oferece um contributo significativo no desenvolvimento de conhecimentos sobre mediação e facilita uma mudança de atitude na resolução de conflitos entre alunos. Concluiu-se também que os AO estão conscientes do seu papel educativo e que têm sugestões pertinentes de melhoria.ABSTRAT This research intends to evaluate whether training in mediation contributes for the development of knowledge in this area, and for changes in attitude, when Operational Assistants (OAs) sort out conflicts between students. The playgrounds of the schools of the 1st Cycle of Basic Education (1stCEB) are the places where almost the conflicts between students happen. These playgrounds are supervised by OAs, which must have specific training in conflict resolution strategies. Mediation is considered the best strategy for addressing students’ conflicts in order to improve school coexistence and positive climate, conducive to the effectiveness of education. The research strategy is based on an intervention study with a convenience sample, both qualitative and quantitative. Data was collected by questionnaire, assessment of knowledge before and after training and final interviews. The participants were 7 OAs. The results revealed the development of knowledge about mediation, who perceives themselves as changing attitudes towards conflicts resolution between students. The results also revealed that the OAs feel devalued, but motivated when interacting to students. Training in conflict mediation offers a significant contribution in the development of knowledge about mediation and facilitates a change of attitude in sorting out conflicts between students. It was also concluded that the OAs are aware of their educational role and have relevant suggestions for improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientador: Professor Doutor Orlando Manuel Martins Marques de Lima Rua

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage source multilevel power converter structures are being considered for high power high voltage applications where they have well known advantages. Recently, full back-to-back connected multilevel neutral diode clamped converters (NPC) have been used in high voltage direct current (HVDC) transmission systems. Bipolar back-to-back connection of NPCs have advantages in long distance HVDC transmission systems, but highly increased difficulties to balance the dc capacitor voltage dividers on both sending and receiving end NPCs. This paper proposes a fast optimum-predictive controller to balance the dc capacitor voltages and to control the power flow in a long distance HVDCsystem using bipolar back-to-back connected NPCs. For both converter sides, the control strategy considers active and reactive power to establish ac grid currents on sending and receiving ends, while guaranteeing the balancing of both NPC dc bus capacitor voltages. Furthermore, the fast predictivecontroller minimizes the semiconductor switching frequency to reduce global switching losses. The performance and robustness of the new fast predictive control strategy and the associated dc capacitors voltage balancing are evaluated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metalearning is a subfield of machine learning with special pro-pensity for dynamic and complex environments, from which it is difficult to extract predictable knowledge. The field of study of this work is the electricity market, which due to the restructuring that recently took place, became an especially complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotia-tion entities. The proposed metalearner takes advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that pro-vides decision support to electricity markets’ participating players. Using the outputs of each different strategy as inputs, the metalearner creates its own output, considering each strategy with a different weight, depending on its individual quality of performance. The results of the proposed meth-od are studied and analyzed using MASCEM - a multi-agent electricity market simulator that models market players and simulates their operation in the market. This simulator provides the chance to test the metalearner in scenarios based on real electricity market´s data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The study examines the implications for shiftworkers of applying different numbers of teams in the organization of shiftwork. METHODS: The participating operators came from five different companies applying continuous shift rotation systems. The companies shared the same product organization and a common corporate culture belonging to the same multinational company. Each company had a shift system consisting of four, five or six teams, with the proportion of shifts outside day work decreasing as the number of teams increased. Questionnaire and documentary data were used as data sources. RESULTS: Operators in systems with additional teams had more daywork but also more irregular working hours due to both overtime and schedule changes. Operators using six teams used fewer social compensation strategies. Operators in four teams were most satisfied with their work hours. Satisfaction with the time available for various social activities outside work varied inconsistently between the groups. CONCLUSIONS: In rotating systems the application of more teams reduces the number of shifts outside day work. This apparent improvement for shiftworkers was counteracted by a concomitant irregularity produced by greater organizational requirements for flexibility. The balance of this interaction was found to have a critical impact on employees.