990 resultados para joint motion
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources for the year ended June 30, 2011
Resumo:
The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.
Resumo:
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.
Resumo:
We compute nonequilibrium correlation functions about the stationary state in which the fluid moves as a consequence of tangential stresses on the liquid surface, related to a varying surface tension (thermocapillary motion). The nature of the stationary state makes it necessary to take into account that the system is finite. We then extend a previous analysis on fluctuations about simple stationary states to include some effects related to the finite size of the sample.
Resumo:
BACKGROUND: Tendon transfers and calcaneal osteotomies are commonly used to treat symptoms related to medial ankle arthrosis in fixed pes cavovarus. However, the relative effect of these osteotomies in terms of lateralizing the ground contact point of the hindfoot and redistributing ankle joint contact stresses are unknown. MATERIALS AND METHODS: Pes cavovarus with fixed hindfoot varus was simulated in eight cadaver specimens. The effect of three types of calcaneal osteotomies on the migration of the center of force and tibiotalar peak pressure at 300 N axial static load (half-body weight) were recorded using pressure sensors. RESULTS: A significant lateral shift of the center of force was observed: 4.9 mm for the laterally closing Z-shaped osteotomy with additional lateralization of the tuberosity, 3.4 mm for the lateral sliding osteotomy of the calcaneal tuberosity, and 2.7 mm for the laterally closing Z-shaped osteotomy (all p < 0.001). A significant peak pressure reduction was recorded: -0.53 MPa for the Z-shaped osteotomy with lateralization, -0.58 MPa for the lateral sliding osteotomy of the calcaneal tuberosity, and -0.41 MPa for the Z-shaped osteotomy (all p < 0.01). CONCLUSION: This cadaver study supports the hypothesis that lateralizing calcaneal osteotomies substantially help to normalize ankle contact stresses in pes cavovarus.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
OBJECTIVE: Cultures have limited sensitivity in the diagnosis of prosthetic joint infection (PJI), especially in low-grade infections. We assessed the value of multiplex PCR in differentiating PJI from aseptic failure (AF). METHODS: Included were patients in whom the joint prosthesis was removed and submitted for sonication. The resulting sonication fluid was cultured and investigated by multiplex PCR, and compared with periprosthetic tissue culture. RESULTS: Among 86 explanted prostheses (56 knee, 25 hip, 3 elbow and 2 shoulder prostheses), AF was diagnosed in 62 cases (72%) and PJI in 24 cases (28%). PJI was more common detected by multiplex PCR (n=23, 96%) than by periprosthetic tissue (n=17, 71%, p=0.031) or sonication fluid culture (n=16, 67%, p=0.016). Among 12 patients with PJI who previously received antibiotics, periprosthetic tissue cultures were positive in 8 cases (67%), sonication fluid cultures in 6 cases (50%) and multiplex PCR in 11 cases (92%). In AF cases, periprosthetic tissue grew organisms in 11% and sonication fluid in 10%, whereas multiplex PCR detected no organisms. CONCLUSIONS: Multiplex PCR of sonication fluid demonstrated high sensitivity (96%) and specificity (100%) for diagnosing PJI, providing good discriminative power towards AF, especially in patients previously receiving antibiotics.
Resumo:
According to 23 CFR § 450.214(a), “The State shall develop a long-range statewide transportation plan, with a minimum 20-year forecast period at the time of adoption, that provides for the development and implementation of the multimodal transportation system for the State.” The state transportation plan (Plan) is a document that will address this requirement and serve as a transportation investment guide between now and 2040. Iowa’s most recent plan was developed by the Iowa Department of Transportation and adopted in 1997 through a planning process called Iowa in Motion. Much of Iowa in Motion has been implemented and this Plan, "Iowa in Motion – Planning Ahead," will build on the success of its predecessor. The Plan projects the demand for transportation infrastructure and services to 2040 based on consideration of social and economic changes likely to occur during this time. Iowa’s economy and the need to meet the challenges of the future will continue to place pressure on the transportation system. With this in mind, the Plan will provide direction for each transportation mode, and will support a renewed emphasis on efficient investment and prudent, responsible management of our existing transportation system. In recent years, the Iowa DOT has branded this philosophy as stewardship. As Iowa changes and the transportation system evolves, one constant will be that the safe and efficient movement of Iowans and our products is essential for stable growth in Iowa’s economy. Iowa’s extensive multimodal and multijurisdictional transportation system is a critical component of economic development and job creation throughout the state.