941 resultados para isothermal titration calorimetry
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study, the drug indomethacin, a non-steroidal anti-inflammatory indoleacetic acid derivative and the complex of indomethacin and lanthanum (III) in solid form were synthesized and characterized by Thermogravimetry (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC) and powder X-ray diffractometry (XRD), infrared vibrational spectroscopy by diffuse reflectance (FTIR) and complexometric titration with EDTA. With the TG curves it was possible to determine the stoichiometry of the complex as La(Ind)3·3.5H2O where Ind is the drug indomethacin. The result of thermal analyzes provided information on the thermal stability, enthalpy of dehydration and thermal behavior of the compounds. The infrared spectrum and with the aid of theoretical calculations suggests that the indomethacin is coordinated by the carboxylate group in the bidentate mode
Resumo:
This Final Paper had as it main goal to make a thermoanalytical study of lighter trivalent lanthanides (Lanthanum, Cerium, Praseodymium, Neodymium, Samarium and Europium) with the Ibuprofen ligand (nonsteroidal anti-inflammatory) that have a general formula LnL3.nH2O, on solid state, where Ln are the Lanthanides, L is the Ibuprofen ligand and n = number of water molecules of hydration that went from 1,0 to all the compounds. In order to characterize this compounds, it has been used the thermoanalytical techniques TG-DTA (thermogravimetry - Diferential Thermal Analysis) and DSC (Diferential Scanning Calorimetry), Fourier transformed infrared spectroscopy (FTIR) and complexometric titration with EDTA. Through the TG-DTA technique, it has been possible to set the thermal stability of the compounds, the number of thermal decomposition steps and temperatures that ocurred that also provided stoichiometry to the synthesized compounds. The DSC technique has shown the enthalpy of dehydration of the samarium and europium compounds, it was not possible to see it in the other compounds due to a endothermic peak on the DSC curve not being formed. In the case of neodymium, a thermal event ocurred, in which it could be a oxidative decarboxylation right after the dehydration. The infrared was utilised to study the carboxilate groups streches, and so, suggest a ligand metals compound coordination, that to this present paper has been a bidentade bridged coordenation. At last, the complexometric tritation was used to very the ammount of metal present in each compound, and so, verify if the proposed stoichiometry was according to the theory
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.
Resumo:
(Isothermal seed germination of Adenanthera pavonina). This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 degrees C. The slope mu of the Arrhenius plot of the germination rates is positive for T < 35 degrees C and negative for T > 35 degrees C. The activation enthalpies, estimated from closely-spaced points, shows that vertical bar Delta H-vertical bar < 12 Cal mol(-1) occur for temperatures in the range between 25 degrees C and 40 degrees C. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.
Resumo:
Background: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.
Resumo:
This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 ºC. The slope µ of the Arrhenius plot of the germination rates is positive for T < 35 ºC and negative for T > 35 ºC. The activation enthalpies, estimated from closely-spaced points, shows that |ΔH-| < 12 Cal mol-1 occur for temperatures in the range between 25 ºC and 40 ºC. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.
Resumo:
Over the past years fruit and vegetable industry has become interested in the application of both osmotic dehydration and vacuum impregnation as mild technologies because of their low temperature and energy requirements. Osmotic dehydration is a partial dewatering process by immersion of cellular tissue in hypertonic solution. The diffusion of water from the vegetable tissue to the solution is usually accompanied by the simultaneous solutes counter-diffusion into the tissue. Vacuum impregnation is a unit operation in which porous products are immersed in a solution and subjected to a two-steps pressure change. The first step (vacuum increase) consists of the reduction of the pressure in a solid-liquid system and the gas in the product pores is expanded, partially flowing out. When the atmospheric pressure is restored (second step), the residual gas in the pores compresses and the external liquid flows into the pores. This unit operation allows introducing specific solutes in the tissue, e.g. antioxidants, pH regulators, preservatives, cryoprotectancts. Fruit and vegetable interact dynamically with the environment and the present study attempts to enhance our understanding on the structural, physico-chemical and metabolic changes of plant tissues upon the application of technological processes (osmotic dehydration and vacuum impregnation), by following a multianalytical approach. Macro (low-frequency nuclear magnetic resonance), micro (light microscopy) and ultrastructural (transmission electron microscopy) measurements combined with textural and differential scanning calorimetry analysis allowed evaluating the effects of individual osmotic dehydration or vacuum impregnation processes on (i) the interaction between air and liquid in real plant tissues, (ii) the plant tissue water state and (iii) the cell compartments. Isothermal calorimetry, respiration and photosynthesis determinations led to investigate the metabolic changes upon the application of osmotic dehydration or vacuum impregnation. The proposed multianalytical approach should enable both better designs of processing technologies and estimations of their effects on tissue.
Resumo:
This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis it has been studied the crystallization and morphology of random copolymers poly (L-lactide-ran-ε-caprolactone) with different compositions of the two monomers since the physical, mechanical, optical and chemical properties of a material depend on this behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) to observe behaviors due to the different compositions of the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-caprolactone) was investigated by polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). Their thermal behavior was observed with crystallization from melt. It was observed that with increasing amounts of PCL in the copolymer, there is a decrease of the thermal degradation. Studies on the crystallization kinetics have shown that small quantities of PCL in the copolymer increase the overall crystallization kinetics and the crystal growth rate which decreases with higher quantities of PCL.
Resumo:
Weltweit sind über 34 Millionen Menschen mit dem HI-Virus infiziert. Da die Behandlung mit der HAART-Therapie aufgrund der hohen Mutationsrate des Virus oft fehlschlägt, ist die stetige Forschung an neuen, verbesserten Wirkstoffen zwingend nötig. Mit einem neuartigen Therapieansatz, der die Aufrechterhaltung des menschlichen antiretroviralen Schutz-mechanismus durch Hemmung des APOBEC3G-Abbaus zum Ziel hat, existiert eine neue Möglichkeit zur Bekämpfung der Infektion. Im Gegensatz zu den HAART-Virustatika soll hier das menschliche Immunsystem aufrechterhalten werden, sodass es die Abwehr des Virus selbst übernehmen kann. Der durch das Virus induzierte Abbau von APOBEC3G ist gekoppelt an die Bildung eines Komplexes aus mehreren Proteinen, darunter das virale Protein vif (viral infectivity factor) und das humane Protein Elongin–C. Wird eine der Interaktionen dieser Komplexbildung gehemmt, so kann APOBEC3G nicht mehr abgebaut werden und der humane Schutzmechanismus bleibt aufrechterhalten.rnDie vorliegende Arbeit widmete sich in diesem Zusammenhang der Suche nach Inhibitoren der vif-Elongin–C-Interaktion. Nach Dockingstudien wurden potentielle Kandidaten synthetisiert und anschließend zunächst mit Hilfe der Mikrokalorimetrie (ITC) und der Oberflächenplasmonenresonanzspektroskopie (SPR) auf ihre Affinität zu rekombinant exprimiertem Elongin–C getestet. Zusätzlich wurde ein auf der Mikroskalierten Thermo-phorese (MST) basierender Bindungsassay etabliert, und die Substanzen auch mit dieser Methode getestet. Während die Bindung in diesen Assays nicht eindeutig nachgewiesen werden konnte, zeigte sich eine Substanz in In-vitro-Tests auf Hemmung der APOBEC3G- und vif-abhängigen Virusreplikation als sehr vielversprechend. Auch wenn der genaue molekulare Wirkort in weiteren Tests erst noch ermittelt werden muss, stellt diese Molekülstruktur aufgrund der bisherigen Testergebnisse bereits eine vielversprechende Basis für weitere Derivatisierungen dar.rn
Resumo:
Nowadays computer simulation is used in various fields, particularly in laboratories where it is used for the exploration data which are sometimes experimentally inaccessible. In less developed countries where there is a need for up to date laboratories for the realization of practical lessons in chemistry, especially in secondary schools and some higher institutions of learning, it may permit learners to carryout experiments such as titrations without the use of laboratory materials and equipments. Computer simulations may also permit teachers to better explain the realities of practical lessons, given that computers have now become very accessible and less expensive compared to the acquisition of laboratory materials and equipments. This work is aimed at coming out with a virtual laboratory that shall permit the simulation of an acid-base titration and an oxidation-reduction titration with the use of synthetic images. To this effect, an appropriate numerical method was used to obtain appropriate organigram, which were further transcribed into source codes with the help of a programming language so as to come out with the software.
Resumo:
BACKGROUND: Neurally adjusted ventilatory assist (NAVA) delivers assist in proportion to the patient's respiratory drive as reflected by the diaphragm electrical activity (EAdi). We examined to what extent NAVA can unload inspiratory muscles, and whether unloading is sustainable when implementing a NAVA level identified as adequate (NAVAal) during a titration procedure. METHODS: Fifteen adult, critically ill patients with a Pao(2)/fraction of inspired oxygen (Fio(2)) ratio < 300 mm Hg were studied. NAVAal was identified based on the change from a steep increase to a less steep increase in airway pressure (Paw) and tidal volume (Vt) in response to systematically increasing the NAVA level from low (NAVAlow) to high (NAVAhigh). NAVAal was implemented for 3 h. RESULTS: At NAVAal, the median esophageal pressure time product (PTPes) and EAdi values were reduced by 47% of NAVAlow (quartiles, 16 to 69% of NAVAlow) and 18% of NAVAlow (quartiles, 15 to 26% of NAVAlow), respectively. At NAVAhigh, PTPes and EAdi values were reduced by 74% of NAVAlow (quartiles, 56 to 86% of NAVAlow) and 36% of NAVAlow (quartiles, 21 to 51% of NAVAlow; p < or = 0.005 for all). Parameters during 3 h on NAVAal were not different from parameters during titration at NAVAal, and were as follows: Vt, 5.9 mL/kg predicted body weight (PBW) [quartiles, 5.4 to 7.2 mL/kg PBW]; respiratory rate (RR), 29 breaths/min (quartiles, 22 to 33 breaths/min); mean inspiratory Paw, 16 cm H(2)O (quartiles, 13 to 20 cm H(2)O); PTPes, 45% of NAVAlow (quartiles, 28 to 57% of NAVAlow); and EAdi, 76% of NAVAlow (quartiles, 63 to 89% of NAVAlow). Pao(2)/Fio(2) ratio, Paco(2), and cardiac performance during NAVAal were unchanged, while Paw and Vt were lower, and RR was higher when compared to conventional ventilation before implementing NAVAal. CONCLUSIONS: Systematically increasing the NAVA level reduces respiratory drive, unloads respiratory muscles, and offers a method to determine an assist level that results in sustained unloading, low Vt, and stable cardiopulmonary function when implemented for 3 h.