904 resultados para iron promoted sulphated zirconia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper applies multispectral remote sensing techniques to map the Fe-oxide content over the entire Namib sand sea. Spectrometric analysis is applied to field samples to identify the reflectance properties of the dune sands which enable remotely sensed Fe-oxide mapping. The results indicate that the pattern of dune colour in the Namib sand sea arises from the mixing of at least two distinct sources of sand; a red component of high Fe-oxide content (present as a coating on the sand grains) which derives from the inland regions, particularly from major embayments into the Southern African escarpment; and a yellow coastal component of low Fe-oxide content which is brought into the area by northward-moving aeolian transport processes. These major provenances are separated by a mixing zone between 20 kin and 90 kin from the coast throughout the entire length of the sand sea. Previous workers have also recognised a third, fluvial, provenance, but the methodology applied here is not able to map this source as a distinct spectral component. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous work we have found that Cp2TiCl2 and its corresponding deriv. of tamoxifen, Titanocene tamoxifen, show an unexpected proliferative effect on hormone dependent breast cancer cells MCF-7. In order to check if this behavior is a general trend for titanocene derivs. we have tested two other titanocene derivs., Titanocene Y and Titanocene K, on this cell line. Interestingly, these two titanocene complexes behave in a totally different manner. Titanocene K is highly proliferative on MCF-7 cells even at low concns. (0.5 .mu.M), thus behave almost similarly to Cp2TiCl2. This proliferative effect is also obsd. in the presence of bovine serum albumin (BSA). In contrast, Titanocene Y alone has almost no effect on MCF-7 at a concn. of 10 .mu.M, but exhibits a significant dose dependent cytotoxic effect of up to 50% when incubated with BSA (20-50 .mu.g/mL). This confirms the crucial role played by the binding to serum proteins in the expression of the in vivo, cytotoxicity of the titanocene complexes. From the hydridolithiation reaction of 6-p-anisylfulvene with LiBEt3H followed by transmetallation with iron dichloride [bis-[(p-methoxy-benzyl)cyclopentadienyl]iron(II)] (Ferrocene Y) was synthesized. This complex, which was characterized by single crystal X-ray diffraction, contains the robust ferrocenyl unit instead of Ti assocd. with easily leaving groups such as chlorine and shows only a modest cytotoxicity against MCF-7 or MDA-MB-231 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pamphlet published by the British Army's Strategic and Combat Studies Institute on the then Captain Orde Wingate's formation and command of the Anglo-Jewish Special Night Squads in the Palestine Arab revolt of 1936-1939, with a discussion of their long-term strategic and political implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EfeUOB system of Escherichia coli is a tripartite, low pH, ferrous iron transporter. It resembles the high-affinity iron transporter (Ftr1p-Fet3p) of yeast in that EfeU is homologous to Ftr1p, an integral-membrane iron-permease. However, EfeUOB lacks an equivalent of the Fet3p component—the multicopper oxidase with three cupredoxin-like domains. EfeO and EfeB are periplasmic but their precise roles are unclear. EfeO consists primarily of a C-terminal peptidase-M75 domain with a conserved ‘HxxE’ motif potentially involved in metal binding. The smaller N-terminal domain (EfeO-N) is predicted to be cupredoxin (Cup) like, suggesting a previously unrecognised similarity between EfeO and Fet3p. Our structural modelling of the E. coli EfeO Cup domain identifies two potential metal-binding sites. Site I is predicted to bind Cu2+ using three conserved residues (C41 and 103, and E66) and M101. Of these, only one (C103) is conserved in classical cupredoxins where it also acts as a Cu ligand. Site II most probably binds Fe3+ and consists of four well conserved surface Glu residues. Phylogenetic analysis indicates that the EfeO-Cup domains form a novel Cup family, designated the ‘EfeO-Cup’ family. Structural modelling of two other representative EfeO-Cup domains indicates that different subfamilies employ distinct ligand sets at their proposed metal-binding sites. The ~100 efeO homologues in the bacterial sequence databases are all associated with various iron-transport related genes indicating a common role for EfeO-Cup proteins in iron transport, supporting a new copper-iron connection in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yncE gene of Escherichia coli encodes a predicted periplasmic protein of unknown function. The gene is de-repressed under iron restriction through the action of the global iron regulator Fur. This suggests a role in iron acquisition, which is supported by the presence of the adjacent yncD gene encoding a potential TonB-dependent outer-membrane transporter. Here, the preliminary crystallographic structure of YncE is reported, revealing that it consists of a seven-bladed beta-propeller which resembles the corresponding domain of the `surface-layer protein' of Methanosarcina mazei. A full structure determination is under way in order to provide insight into the function of this protein.