925 resultados para inhibition of HA formation
Resumo:
The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.
Resumo:
Identifying a stimulus as the target for a goal-directed movement involves inhibiting competing responses. Separable inhibitory interconnections bias local competition to ensure only one stimulus is selected and to alter movement initiation. Behavioural evidence of these inhibitory processes comes from the effects of distracters on oculomotor landing positions and saccade latencies. Here, we investigate the relationship between these two sources of inhibition. Targets were presented with or without close and remote distracters. In separate experiments the possible position and identity of the target and distracters were manipulated. In all cases saccade landing position was found to be less affected by the presence of the close distracter when remote distracters were also present. The involuntary increase in the latency of saccade initiation caused by the presence of the remote distracters alters the state of competitive processes involved in selecting the saccade target thus changing its landing position.
Resumo:
Treatment of murine Swiss 3T3 fibroblasts and XB/2 keratinocytes with UV-B light (302 nm) resulted in a dose-dependent inhibition of [125I] epidermal growth factor (EGF) binding. The light dose required to achieve 50% inhibition of binding in both cell types was 80–85 J/m2 Decreased [125I] platelet-derived growth factor binding was not evoked even by light doses of up to 280 J/m2 UV-B irradiation did not stimultate phosphorylation of the 80 kd protein substrate for protein kinase C. Furthermore, its effect on [125I]EGF binding was not altered as a consequence of protein kinase C down-regulation following prolonged exposure of cells to phorbol esters. These results indicate that UV-B-induced transmodulation of the epidermal growth factor receptor is a specific event mediated through a protein kinase C-indepen dent pathway. Transfer of culture medium from irradiated cells to untreated control cells showed this effect was not induced as a result of transforming growth factor α release and subsequent binding to the EGF receptor in these cells.
Resumo:
Saccadic eye-movements to a visual target are less accurate if there are distracters close to its location (local distracters). The addition of more distracters, remote from the target location (remote distracters), invokes an involuntary increase in the response latency of the saccade and attenuates the effect of local distracters on accuracy. This may be due to the target and distracters directly competing (direct route) or to the remote distracters acting to impair the ability to disengage from fixation (indirect route). To distinguish between these we examined the development of saccade competition by recording saccade latency and accuracy responses made to a target and local distracter compared with those made with an addition of a remote distracter. The direct route would predict that the remote distracter impacts on the developing competition between target and local distracter, while the indirect route would predict no change as the accuracy benefit here derives from accessing the same competitive process but at a later stage. We found that the presence of the remote distracter did not change the pattern of accuracy improvement. This suggests that the remote distracter was acting along an indirect route that inhibits disengagement from fixation, slows saccade initiation, and enables more accurate saccades to be made.
Resumo:
Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.
Resumo:
Given the recent EU ban of antibiotics to promote the growth of farm animals, alternative approaches are needed for animal production systems. Tannins, which are already commercially marketed for animal nutrition, have bacteriostatic and bactericidal properties against pathogenic bacteria. The aim of this study was to investigate the inhibitory effect of various tannins against Salmonella Typhimurium (SL1344nal(r)) to identify potentially effective feed additives. Different sources of condensed and hydrolysable tannins were tested at concentrations between I and 6 mg ml(-1). The tannins tested were either commercial preparations or isolated from such preparations or from plants using Sephadex LH-20 based column chromatography. Some, but not all, of the tannins significantly decreased bacterial growth compared to tannin-free selenite cystine broth following incubation for 24 h at 37 degrees C. Gallotannins were especially effective and tara achieved 1.28 log(10) reductions after 24 hours. Antibacterial activity was also confirmed with inhibition zone diameters in a disc diffusion test. The experiments demonstrated that tannins may have potential as feed additives for reducing Salmonella infections in farm animals.
Resumo:
Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception.
Resumo:
NO/prostanoid independent, EDHF-mediated hyperpolarization and dilation in rat middle cerebral arteries is mediated solely by endothelial cell IK(Ca). However, when the NO-pathway is also active, both SK(Ca) and IK(Ca) contribute to EDHF responses. As the SK(Ca) component can be inhibited by stimulation of thromboxane A(2) (TxA(2)) TP receptors and NO has the potential ability to inhibit thromboxane synthesis, we investigated whether TxA(2) might explain loss of functional input from SK(Ca) during NOS inhibition in cerebral arteries. EXPERIMENTAL APPROACH: Rat middle cerebral arteries were mounted in a wire myograph. Endothelium-dependent responses to the PAR2 agonist, SLIGRL were assessed as simultaneous changes in smooth muscle membrane potential and tension. KEY RESULTS: Responses were obtained in the presence of L-NAME as appropriate. Inhibition of TP receptors with either ICI 192,605 or SQ 29,548, did not affect EDHF mediated hyperpolarization and relaxation, but in their presence neither TRAM-34 nor apamin (to block IK(Ca) and SK(Ca) respectively) individually affected the EDHF response. However, in combination they virtually abolished it. Similar effects were obtained in the presence of the thromboxane synthase inhibitor, furegrelate, which additionally revealed an iberiotoxin-sensitive residual EDHF hyperpolarization and relaxation in the combined presence of TRAM-34 and apamin. CONCLUSIONS AND IMPLICATIONS: In the rat middle cerebral artery, inhibition of NOS leads to a loss of the SK(Ca) component of EDHF responses. Either antagonism of TP receptors or block of thromboxane synthase restores an input through SK(Ca). These data indicate that NO normally enables SK(Ca) activity in rat middle cerebral arteries.
Resumo:
Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit C. difficile, E. coli and S. Typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p<0.05 or less) greater inhibition of pathogens in 12 out of 24 cases. Despite evidence that probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain.
Resumo:
The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K) – Akt signalling pathways retains FoxO3a in the cytoplasm thereby inhibiting the transcriptional activation of death promoting genes. We hypothesised that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localisation of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and upregulated Fas ligand expression. In contrast the phenolic antioxidant tBHQ caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a prevented NMDA-induced upregulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration.
Resumo:
Aircraft flying through cold ice-supersaturated air produce persistent contrails which contribute to the climate impact of aviation. Here, we demonstrate the importance of the weather situation, together with the route and altitude of the aircraft through this, on estimating contrail coverage. The results have implications for determining the climate impact of contrails as well as potential mitigation strategies. Twenty-one years of re-analysis data are used to produce a climatological assessment of conditions favorable for persistent contrail formation between 200 and 300 hPa over the north Atlantic in winter. The seasonal-mean frequency of cold ice-supersaturated regions is highest near 300 hPa, and decreases with altitude. The frequency of occurrence of ice-supersaturated regions varies with large-scale weather pattern; the most common locations are over Greenland, on the southern side of the jet stream and around the northern edge of high pressure ridges. Assuming aircraft take a great circle route, as opposed to a more realistic time-optimal route, is likely to lead to an error in the estimated contrail coverage, which can exceed 50% for westbound north Atlantic flights. The probability of contrail formation can increase or decrease with height, depending on the weather pattern, indicating that the generic suggestion that flying higher leads to fewer contrails is not robust.