973 resultados para induced platelet-aggregation
Resumo:
Ultraviolet radiation plays a critical role in the induction of non-melanoma skin cancer. UV radiation is also immune suppressive. Moreover, UV-induced systemic immune suppression is a major risk factor for skin cancer induction. Previous work had shown that UV exposure in vivo activates a cytokine cascade involving PGE2, IL-4, and IL-10 that induces immune suppression. However, the earliest molecular events that occur immediately after UV-exposure, especially those upstream of PGE2, were not well defined. To determine the initial events and mediators that lead to immune suppression after a pathological dose of UV, mouse keratinocytes were analyzed after sunlamp irradiation. It is known that UV-irradiated keratinocytes secrete the phospholipid mediator of inflammation, platelet-activating factor (PAF). Since PAF stimulates the production of immunomodulatory compounds, including PGE2, the hypothesis that UV-induced PAF activates cytokine production and initiates UV-induced immune suppression was tested. Both UV and PAF activated the transcription of cyclooxygenase (COX)-2 and IL-10 reporter gene constructs. A PAF receptor antagonist blocked UV-induced IL, 10 and COX-2 transcription. PAF mimicked the effects of UV in vivo and suppressed delayed-type hypersensitivity (DTH), and immune suppression was blocked when UV-irradiated mice were injected with a PAF receptor antagonist. This work shows that UV generates PAF-like oxidized lipids, that signal through the PAF receptor, activate cytokine transcription, and induce systemic immune suppression. ^
Resumo:
Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.
Resumo:
A mesocosm experiment was conducted to investigate the impact of rising fCO2 on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (~38 m³ each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 µatm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (>1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO2, higher dPOC:dPON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO2. We conclude that increasing fCO2 supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future.
Resumo:
Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180-425 µatm) and future acidification scenarios (~550-800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 µatm or higher.
Resumo:
The ubiquitously expressed Na–H exchanger NHE1 functions in regulating intracellular pH and cell volume. NHE1 activity is stimulated by hormones, growth factors, and activation of integrin receptors. We recently determined that NHE1 activity is also stimulated by activation of the low molecular weight GTPase RhoA and that increases in NHE1 activity are necessary for RhoA-induced formation of actin stress fibers. We now show that NHE1 acts downstream of RhoA to modulate initial steps in integrin signaling for the assembly of focal adhesions. Adhesion of CCL39 fibroblasts on fibronectin was markedly delayed in the presence of the NHE inhibitor ethylisopropylamiloride. In mutant PS120 cells, derived from CCL39 fibroblasts but lacking NHE1, adhesion was also delayed but was rescued in PS120 cells stably expressing NHE1. In the absence of NHE1 activity, cell spreading was inhibited, and the accumulation of integrins, paxillin, and vinculin at focal contacts was impaired. Additionally, tyrosine phosphorylation of p125FAK induced by integrin clustering was also impaired. Inactivation of RhoA with C3 transferase and inhibition of the Rho-kinase p160ROCK with the pyridine derivative Y-27632 completely abolished activation of NHE1 by integrins but not by platelet-derived growth factor. These findings indicate that NHE1 acts downstream of RhoA to contribute a previously unrecognized critical signal to proximal events in integrin-induced cytoskeletal reorganization.
Resumo:
Conjugation of drugs with antibodies to surface endothelial antigens is a potential strategy for drug delivery to endothelium. We studied antibodies to platelet-endothelial adhesion molecule 1 (PECAM-1, a stably expressed endothelial antigen) as carriers for vascular immunotargeting. Although 125I-labeled anti-PECAM bound to endothelial cells in culture, the antibody was poorly internalized by the cells and accumulated poorly after intravenous administration in mice and rats. However, conjugation of biotinylated anti-PECAM (b-anti-PECAM) with streptavidin (SA) markedly stimulated uptake and internalization of anti-PECAM by endothelial cells and by cells expressing PECAM. In addition, conjugation with streptavidin markedly stimulated uptake of 125I-labeled b-anti-PECAM in perfused rat lungs and in the lungs of intact animals after either intravenous or intraarterial injection. The antioxidant enzyme catalase conjugated with b-anti-PECAM/SA bound to endothelial cells in culture, entered the cells, escaped intracellular degradation, and protected the cells against H2O2-induced injury. Anti-PECAM/SA/125I-catalase accumulated in the lungs after intravenous injection or in the perfused rat lungs and protected these lungs against H2O2-induced injury. Thus, modification of a poor carrier antibody with biotin and SA provides an approach for facilitation of antibody-mediated drug targeting. Anti-PECAM/SA is a promising candidate for vascular immunotargeting of bioactive drugs.
Resumo:
The bovine papillomavirus E5 protein is a 44-aa transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor and induces constitutive tyrosine phosphorylation and activation of the receptor, resulting in cell transformation. The E5 protein does not resemble PDGF, but rather activates the receptor in a ligand-independent fashion, thus providing a unique system to examine activation of receptor tyrosine kinases. Here, we used a variety of approaches to explore the mechanism of receptor activation by the E5 protein. Chemical cross-linking experiments revealed that the E5 protein activated only a small fraction of the endogenous PDGF β receptor in transformed fibroblasts and suggested that this fraction was constitutively dimerized. Coimmunoprecipitation experiments using extracts of cells engineered to coexpress full-length and truncated PDGF β receptors confirmed that the E5 protein induced oligomerization of the receptor. Furthermore, in cells expressing the E5 protein, a kinase-active receptor was able to trans-phosphorylate a kinase-negative mutant receptor but was unable to catalyze intramolecular autophosphorylation. These results indicated that the E5 protein induced PDGF β receptor activation by forming a stable complex with the receptor, resulting in receptor dimerization and trans-phosphorylation.
Resumo:
Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3β protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3β protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF → Src → Stat3 → Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.
Resumo:
Abnormal mesoderm movement, leading to defects in axial organization, is observed in mouse and Xenopus laevis embryos deprived of platelet-derived growth factor (PDGF) AA signaling. However, neither the cellular response to PDGF nor the signaling pathways involved are understood. Herein we describe an in vitro assay to examine the direct effect of PDGF AA on aggregates of Xenopus embryonic mesoderm cells. We find that PDGF AA stimulates aggregates to spread on fibronectin. This behavior is similar to that of migrating mesoderm cells in vivo that spread and form lamellipodia and filipodia on contact with fibronectin-rich extracellular matrix. We go on to show two lines of evidence that implicate phosphatidylinositol 3-kinase (PI3K) as an important component of PDGF-induced mesoderm cell spreading. (i) The fungal metabolite wortmannin, which inhibits signaling by PI3K, blocks mesoderm spreading in response to PDGF AA. (ii) Activation of a series of receptors with specific tyrosine-to-phenylalanine mutations revealed PDGF-induced spreading of mesoderm cells depends on PI3K but not on other signaling molecules that interact with PDGF receptors including phospholipase C gamma, Ras GTPase-activating protein, and phosphotyrosine phosphatase SHPTP2. These results indicate that a PDGF signal, medicated by PI3K, can facilitate embryonic mesoderm cell spreading on fibronectin. We propose that PDGF, produced by the ectoderm, influences the adhesive properties of the adjacent mesoderm cells during gastrulation.
Resumo:
The adsorption of cationic organic dyes (methylene blue, thionine, and thiopyronine) on Qbeta bacteriophage was studied by UV-visible and fluorescence spectroscopy. The dyes have shown a strong affinity to the virus and some have been used as sensitizers for photo-induced inactivation of virus. In the methylene blue concentration range of 0.1-5 microM and at high ratios of dye to virus (greater than 1000 dye molecules per virion), the dyes bind as aggregates on the virus. Aggregation lowers the efficiency of photoinactivation because of self-quenching of the dye. At lower ratios of dye to virus (lower than 500 dye molecules per virion), the dye binds to the virus as a monomer. Fluorescence polarization and time-resolved studies of the fluorescence support the conclusions based on fluorescence quenching. Increasing the ionic strength (adding NaCl) dissociates bound dye aggregates on the virus and releases monomeric dye into the bulk solution.
The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene.
Resumo:
Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling.
Resumo:
The L-arginine:nitric oxide (NO) pathway is believed to exert many of its physiological effects via stimulation of the soluble guanylyl cyclase (SGC); however, the lack of a selective inhibitor of this enzyme has prevented conclusive demonstration of this mechanism of action. We have found that the compound 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) inhibits the elevation of cGMP induced by the NO donor S-nitroso-DL-penicillamine in human platelets and rat vascular smooth muscle (IC50 = 10-60 nM and <10 nM, respectively) and that this is accompanied by prevention of the platelet inhibitory and vasodilator actions of NO donors. ODQ also inhibited the antiaggregatory action of NO generated by the platelets but did not affect the action of prostacyclin or that of a cGMP mimetic. In addition, ODQ inhibited the vasodilator actions of endogenously released NO and of NO generated after induction of NO synthase in vascular preparations. It did not, however, affect the increase in vascular smooth muscle cGMP or the dilatation induced by atrial natriuretic factor. ODQ had no effect on NO synthase activity, nor did it react with NO. It did, however, potently (IC50 approximately 10 nM) inhibit the activity of the SGC in cytosol obtained from crude extract of rat aortic smooth muscle. Thus ODQ prevents the actions of NO on platelets and vascular smooth muscle through its potent inhibitory effect on the SGC.
Resumo:
The beta-amyloid peptide, the hallmark of Alzheimer disease, forms fibrillar toxic aggregates in brain tissue that can be dissolved only by strong denaturing agents. To study beta-amyloid formation and its inhibition, we prepared immune complexes with two monoclonal antibodies (mAbs), AMY-33 and 6F/3D, raised against beta-amyloid fragments spanning amino acid residues 1-28 and 8-17 of the beta-amyloid peptide chain, respectively. In vitro aggregation of beta-amyloid peptide was induced by incubation for 3 h at 37 degrees C and monitored by ELISA, negative staining electron microscopy, and fluorimetric studies. We found that the mAs prevent the aggregation of beta-amyloid peptide and that the inhibitory effect appears to be related to the localization of the antibody-binding sites and the nature of the aggregating agents. Preparation of mAbs against "aggregating epitopes," defined as sequences related to the sites where protein aggregation is initiated, may lead to the understanding and prevention of protein aggregation. The results of this study may provide a foundation for using mAbs in vivo to prevent the beta-amyloid peptide aggregation that is associated with Alzheimer disease.
Resumo:
Neovascularization that generates collateral blood flow can limit the extent of tissue damage after acute ischemia caused by occlusion of the primary blood supply. The neovascular response stimulated by the BB homodimeric form of recombinant platelet-derived growth factor (PDGF-BB) was evaluated for its capacity to protect tissue from necrosis in a rat skin flap model of acutely induced ischemia. Complete survival of the tissue ensued, when the original nutritive blood supply was occluded, as early as 5 days after local PDGF-BB application, and the presence of a patent vasculature was evident compared to control flaps. To further evaluate the vascular regenerative response, PDGF-BB was injected into the muscle/connective tissue bed between the separated ends of a divided femoral artery in rats. A patent new vessel that functionally reconnected the ends of the divided artery within the original 3- to 4-mm gap was regenerated 3 weeks later in all PDGF-BB-treated limbs. In contrast, none of the paired control limbs, which received vehicle with an inactive variant of PDGF-BB, had vessel regrowth (P < 0.001). The absence of a sustained inflammatory response and granulation tissue suggests locally delivered PDGF-BB may directly stimulate the angiogenic phenotype in endothelial cells. These findings indicate that PDGF-BB can generate functional new blood vessels and nonsurgically anastomose severed vessels in vivo. This study supports the possibility of a therapeutic modality for the salvage of ischemic tissue through exogenous cytokine-induced vascular reconnection.
Resumo:
The platelet-derived growth factor (PDGF) receptor is a member of the transmembrane growth factor receptor protein family with intrinsic protein-tyrosine kinase activity. We describe a potent protein-tyrosine kinase inhibitor (CGP 53716) that shows selectivity for the PDGF receptor in vitro and in the cell. The compound shows selectivity for inhibition of PDGF-mediated events such as PDGF receptor autophosphorylation, cellular tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of intact cells. In contrast, ligand-induced autophosphorylation of the epidermal growth factor (EGF) receptor, insulin receptor, and the insulin-like growth factor I receptor, as well as c-fos mRNA expression induced by EGF, fibroblast growth factor, and phorbol ester, was insensitive to inhibition by CGP 53716. In antiproliferative assays, the compound was approximately 30-fold more potent in inhibiting PDGF-mediated growth of v-sis-transformed BALB/c 3T3 cells relative to inhibition of EGF-dependent BALB/Mk cells, interleukin-3-dependent FDC-P1 cells, and the T24 bladder carcinoma line. When tested in vivo using highly tumorigenic v-sis- and human c-sis-transformed BALB/c 3T3 cells, CGP 53716 showed antitumor activity at well-tolerated doses. In contrast, CGP 53716 did not show antitumor activity against xenografts of the A431 tumor, which overexpresses the EGF receptor. These findings suggest that CGP 53716 may have therapeutic potential for the treatment of diseases involving abnormal cellular proliferation induced by PDGF receptor activation.