910 resultados para indirect and composite estimators
Resumo:
Indirect Immunofluorescence (IFA), Plaque Reduction Neutralization (PRN) and Haemagglutination Inhibition (HI) tests for measles antibodies were carried out in 197 sera obtained from umbilical cord and vaccinated children. The IFA was also applied to blood samples collected with filter paper. IFA results demonstrated that the test is relatively simple to perform, with good reproducibility for different antigen lots. Good correlation was obtained between IFA, PRN and HI antibody titers. Better correlation was demonstrated with IFA and PRN than with HI and PRN tests. Sensitivity of IFA in detecting antibody was less effective than PRN, however more effective than HI using rhesus monkey red blood cells. PRN antibody titers over 100 were detected by IFA but not by HI (9.7% with negative results). IFA may be of considerable practical use and able to substitute HI in Seroepidemiological surveys and to evaluate vaccine efficacy. It also can be simplified by employing filter paper collected samples.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Crude Toxoplasma gondii antigens represent raw material used to prepare reagents to be employed in different serologic tests for the diagnosis of toxoplasmosis, including the IgM and IgG indirect hemagglutination (IgG-HA and IgM-HA) tests. So far, the actual antigenic molecules of the parasite involved in the interaction with agglutinating anti-T. gondii antibodies in these tests are unknown. The absorption process of serum samples from toxoplasmosis patients with the IgG-HA reagent (G-toxo-HA) demonstrated that red cells from this reagent were coated with T. gondii antigens with Mr of 39, 35, 30, 27, 22 and 14 kDa. The immune-absorption process with the IgM-HA reagent (M-toxo-HA), in turn, provided antibody eluates which recognized antigenic bands of the parasite corresponding to Mr of 54, 35 and 30 kDa, implying that these antigens are coating red cells from this reagent. The identification of most relevant antigens for each type of HA reagent seems to be useful for the inspection of the raw antigenic material, as well as of reagent batches routinely produced. Moreover the present findings can be used to modify these reagents in order to improve the performance of HA tests for the diagnosis of toxoplasmosis
Resumo:
Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia
Resumo:
We compared the indirect immunofluorescence assay (IFA) with Western blot (Wb) as a confirmatory method to detect antibodies anti retrovirus (HIV-1 and HTLV-I/II). Positive and negative HIV-1 and HTLV-I/II serum samples from different risk populations were studied. Sensitivity, specificity, positive, negative predictive and kappa index values were assayed, to assess the IFA efficiency versus Wb. The following cell lines were used as a source of viral antigens: H9 ( HTLV-III b); MT-2 and MT-4 (persistently infected with HTLV-I) and MO-T (persistently infected with HTLV-II). Sensitivity and specificity rates for HIV-1 were 96.80% and 98.60% respectively, while predictive positive and negative values were 99.50% and 92.00% respectively. No differences were found in HIV IFA performance between the various populations studied. As for IFA HTLV system, the sensitivity and specificity values were 97.91% and 100% respectively with positive and negative predictive values of 100% and 97.92%. Moreover, the sensitivity of the IFA for HTLV-I/II proved to be higher when the samples were tested simultaneously against both antigens (HTLV-I-MT-2 and HTLV-II-MO-T). The overall IFA efficiency for HIV-1 and HTLV-I/II-MT-2 antibody detection probed to be very satisfactory with an excellent correlation with Wb (Kappa indexes 0.93 and 0.98 respectively). These results confirmed that the IFA is a sensitive and specific alternative method for the confirmatory diagnosis of HIV-1 and HTLV-I/II infection in populations at different levels of risk to acquire the infection and suggest that IFA could be included in the serologic diagnostic algorithm.
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.
Resumo:
We have developed a cheaper an simple in house indirect ELISA that uses the live attenuated VZV vaccine as a coating antigen. The alternative ELISA had an agreement of 94% when compared with a commercial VZV ELISA kit. Moreover, our ELISA proved to be more reliable than the kit when assessing true negative samples. By adding a standard serum, we were able to produce results in international units per millilitre. Also, the addition of an extra step with 8M urea allowed the assessment of VZV IgG avidity without excessive costs. The cost per sample to test VZV IgG was 2.7 times cheaper with our ELISA, allowing the testing of many samples without the burden of production of VZV antigen in the laboratory.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
Recent Advances in Mechanics and Materials in Design
Resumo:
Using the indirect hemagglutination (IH), indirect immunofluorescence (IIF) and enzyme linked immunosorbent assay (ELISA) tests for the diagnosis of Chagas disease, 4000 serum samples were examined. This study was conducted with different purposes: clinical interest, research support and parasitological monitoring of those patients with Chagas disease who were treated with heart transplantations. The tests occurred without patient selection and in accordance with the medical requests. The results showed discrepancies and brought about several questions, considering the different results that all three methods showed when considered together. What was found brought about concerns and we suggest the adoption of different measures, aiming to avoid these mismatches in the context of this disease.
Resumo:
With the need to find an alternative way to mechanical and welding joints, and at the same time to overcome some limitations linked to these traditional techniques, adhesive bonds can be used. Adhesive bonding is a permanent joining process that uses an adhesive to bond the components of a structure. Composite materials reinforced with fibres are becoming increasingly popular in many applications as a result of a number of competitive advantages. In the manufacture of composite structures, although the fabrication techniques reduce to the minimum by means of advanced manufacturing techniques, the use of connections is still required due to the typical size limitations and design, technological and logistical aspects. Moreover, it is known that in many high performance structures, unions between composite materials with other light metals such as aluminium are required, for purposes of structural optimization. This work deals with the experimental and numerical study of single lap joints (SLJ), bonded with a brittle (Nagase Chemtex Denatite XNRH6823) and a ductile adhesive (Nagase Chemtex Denatite XNR6852). These are applied to hybrid joints between aluminium (AL6082-T651) and carbon fibre reinforced plastic (CFRP; Texipreg HS 160 RM) adherends in joints with different overlap lengths (LO) under a tensile loading. The Finite Element (FE) Method is used to perform detailed stress and damage analyses allowing to explain the joints’ behaviour and the use of cohesive zone models (CZM) enables predicting the joint strength and creating a simple and rapid design methodology. The use of numerical methods to simulate the behaviour of the joints can lead to savings of time and resources by optimizing the geometry and material parameters of the joints. The joints’ strength and failure modes were highly dependent on the adhesive, and this behaviour was successfully modelled numerically. Using a brittle adhesive resulted in a negligible maximum load (Pm) improvement with LO. The joints bonded with the ductile adhesive showed a nearly linear improvement of Pm with LO.
Resumo:
Dissertação para obtenção do Grau de Mestre em Conservação e Restauro
Resumo:
Clinical and serological follow-up of 7 patients submitted to renal transplantation and presenting positive serological reactions to Chagas 'disease before immunossupression did not show significant changes in indirect immunofluorescence and complement fixation titres for Chagas ' disease, or signs and symptoms indicating exacerbation of the disease during follow- up. In addition, 18 of 66 recipients of renal transplants considered to be non-chagasic before immunosuppression showed at least one positive result to the indirect immunofluorescence test for Chagas ' disease during the study period. The results suggest that the immunosuppression State induced in chagasic patients submitted to renal transplant did notpromoted exacerbation of the chronic infection in these patients and not interfere with the serological response of chronic chagasics, thus permitting the use of these serologic reactions for diagnostic purposes in these cases. However, the positive results ofthe indirect immunofluorescence test in non- chagasic patients indicate the needforjudicious interpretation ofthe indirect immunofluorescence test for the diagnosis of Chagas' disease in renal transplanted patients.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática