905 resultados para identification and validation of knowledge
Resumo:
"R6-PNW-019-90."
Resumo:
"A mimeograph release of the University of Minnesota Industrial Relations Center, June 1955 ... Not for publication; For profession use only."
Resumo:
Includes bibliography.
Resumo:
Includes bibliographical references (p. 313-314) and index.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The chromodomain is 40-50 amino acids in length and is conserved in a wide range of chromatic and regulatory proteins involved in chromatin remodeling. Chromodomain-containing proteins can be classified into families based on their broader characteristics, in particular the presence of other types of domains, and which correlate with different subclasses of the chromodomains themselves. Hidden Markov model (HMM)-generated profiles of different subclasses of chromodomains were used here to identify sequences encoding chromodomain-containing proteins in the mouse transcriptome and genome. A total of 36 different loci encoding proteins containing chromodomains, including 17 novel loci, were identified. Six of these loci (including three apparent pseudogenes, a novel HP1 ortholog, and two novel Msl-3 transcription factor-like proteins) are not present in the human genome, whereas the human genome contains four loci (two CDY orthologs and two apparent CDY pseuclogenes) that are not present in mouse. A number of these loci exhibit alternative splicing to produce different isoforms, including 43 novel variants, some of which lack the chromodomain. The likely functions of these proteins are discussed in relation to the known functions of other chromodomain-containing proteins within the same family.
Resumo:
The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.
Resumo:
An LC/MS analysis with diagnostic screening for the detection of peptides with posttranslational modifications revealed the presence of novel sulfated peptides within the -conotoxin molecular mass range in Conus anemone crude venom. A functional assay of the extract showed activity at several neuronal nicotinic acetylcholine receptors (nAChRs). Three sulfated alpha-conotoxins (AnIA, AnIB, and AnIC) were identified by LC/MS and assay-directed fractionation and sequenced after purification. The most active of these, alpha-AnIB, was further characterized and used to investigate the influence of posttranslational modifications on affinity. Synthetic AnIB exhibited subnanomolar potency at the rat alpha3/beta2 nAChR (IC50 0.3 nM) and was 200-fold less active on the rat alpha7 nAChR (IC50 76 nM). The unsulfated peptide [Tyr(16)]AnIB showed a 2-fold and 10-fold decrease in activities at alpha3beta2 (IC50 0.6 nM) and alpha7(IC50 836 nM) nAChR, respectively. Likewise, removal of the C-terminal amide had a greater influence on potency at the alpha7 (IC50 367 nM) than at the alpha3beta2 nAChR (IC50 0.5 nM). Stepwise removal of two N-terminal glycine residues revealed that these residues affect the binding kinetics of the peptide. Comparison with similar 4/7-alpha-conotoxin sequences suggests that residue 11 (alanine or glycine) and residue 14 (glutamine) constitute important determinants for alpha3beta2 selectivity, whereas the C-terminal amidation and sulfation at tyrosine-16 favor alpha7 affinity.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
The schema of an information system can significantly impact the ability of end users to efficiently and effectively retrieve the information they need. Obtaining quickly the appropriate data increases the likelihood that an organization will make good decisions and respond adeptly to challenges. This research presents and validates a methodology for evaluating, ex ante, the relative desirability of alternative instantiations of a model of data. In contrast to prior research, each instantiation is based on a different formal theory. This research theorizes that the instantiation that yields the lowest weighted average query complexity for a representative sample of information requests is the most desirable instantiation for end-user queries. The theory was validated by an experiment that compared end-user performance using an instantiation of a data structure based on the relational model of data with performance using the corresponding instantiation of the data structure based on the object-relational model of data. Complexity was measured using three different Halstead metrics: program length, difficulty, and effort. For a representative sample of queries, the average complexity using each instantiation was calculated. As theorized, end users querying the instantiation with the lower average complexity made fewer semantic errors, i.e., were more effective at composing queries. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.
Resumo:
Workflow systems have traditionally focused on the so-called production processes which are characterized by pre-definition, high volume, and repetitiveness. Recently, the deployment of workflow systems in non-traditional domains such as collaborative applications, e-learning and cross-organizational process integration, have put forth new requirements for flexible and dynamic specification. However, this flexibility cannot be offered at the expense of control, a critical requirement of business processes. In this paper, we will present a foundation set of constraints for flexible workflow specification. These constraints are intended to provide an appropriate balance between flexibility and control. The constraint specification framework is based on the concept of pockets of flexibility which allows ad hoc changes and/or building of workflows for highly flexible processes. Basically, our approach is to provide the ability to execute on the basis of a partially specified model, where the full specification of the model is made at runtime, and may be unique to each instance. The verification of dynamically built models is essential. Where as ensuring that the model conforms to specified constraints does not pose great difficulty, ensuring that the constraint set itself does not carry conflicts and redundancy is an interesting and challenging problem. In this paper, we will provide a discussion on both the static and dynamic verification aspects. We will also briefly present Chameleon, a prototype workflow engine that implements these concepts. (c) 2004 Elsevier Ltd. All rights reserved.