816 resultados para hydrobenzofuran skeleton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A longitudinal bone survey was conducted in 86 female Wistar rats in order to assess mineral density kinetics from young age (5 weeks: 115 g) till late adulthood (64 weeks: 586 g). In vivo quantitative radiographic scanning was performed on the caudal vertebrae, taking trabecular mass as the parameter. Measurements were expressed as Relative Optical Density (ROD) units by means of a high resolution densitometric device. Results showed a progressive increase in mineral density throughout the life cycle, with a tendency to level in the higher weight range, indicating that progressive mineral aposition occurs in rats in dependency of age. This phenomenon, however, should be always considered within the context of continuous skeletal growth and related changes typical of this species. Twelve different animals were also examined following induction of articular inflammation with Freund's adjuvant in six of them. Bone survey conducted 12 to 18 days after inoculation revealed a significant (P less than 0.01) reduction in trabecular bone mass of scanned vertebrae in comparison with the weight-matched untreated controls. It is concluded that the in vivo quantitative assessment of bone density illustrated in this report represents a sensitive and useful tool for the long-term survey of naturally occurring or experimentally induced bone changes. Scanning of the same part of the skeleton can be repeated, thereby avoiding sacrifice of the animal and time-consuming preparation of post-mortem material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to estimate the hospitalization incidence and the total number of hospital days related to all fractures and osteoporotic fractures in the year 2000 in Switzerland and to compare these with data from other frequent disorders in men and women. The official administrative and medical statistics database of the Swiss Federal Office of Statistics (SFOS) from the year 2000 was used. It covered 81.2% of all registered patient admissions and was considered to be representative of the entire population. We included the ICD-10 codes of 84 diagnoses that were compatible with an underlying osteoporosis and applied the best matching age-specific osteoporosis attribution rates published for the ICD-9 diagnosis codes to the individual ICD-10 codes. To preserve comparability with previously published data from 1992, we grouped the data related to the ICD-10 fracture codes into seven diagnosis pools (fractures of the axial skeleton, fractures of the proximal upper limbs, fractures of the distal upper limbs, fractures of the proximal lower limbs, fractures of the distal lower limbs, multiple fractures, and osteoporosis) and analyzed them separately for women and men by age group. Incidences of hospitalization due to fractures were calculated, and the direct medical costs related to hospitalization were estimated. In addition, we compared the results with those from chronic pulmonary obstructive disease (COPD), stroke, acute myocardial infarction, heart failure, diabetes and breast carcinoma from the same database. In Switzerland during 2000, 62,535 hospitalizations for fractures (35,586 women and 26,949 men) were registered. Fifty-one percent of all fractures in women and 24% in men were considered as osteoporotic. The overall incidences of hospitalization due to fractures were 969 and 768 per 100,000 in women and men, respectively. The hospitalization incidences for fractures of the proximal lower limbs and the axial skeleton increased exponentially after the age of 65 years. The direct medical cost of hospitalization of patients with osteoporosis and/or related fractures was 357 million CHF. Hip fractures accounted for approximately half of these costs in women and men. Among other common diseases in women and men, osteoporosis ranked number 1 in women and number 2 (behind COPD) in men. When compared with data from 1992, the average length of stay had shortened by 8.4 days for women and 4.7 days for men, leading to a decrease of almost 40% in direct medical costs related to acute hospitalizations. This apparent decrease in cost might result from a shift into the ambulatory cost segment, for which the assessment and management tools need to be developed. We conclude that, in 2000, osteoporosis continued to be a heavy burden on the Swiss healthcare system. Lack of awareness of the disease and its consequences prevents widespread use of drugs with anti-fracture efficacy. This limits their potential to reduce costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone mineral density of a woman in the second half of her life depends on the amount of bone made during growth and its subsequent rate of loss. Although the rate of bone loss did receive more attention in the study of pathogenesis of osteoporosis, it is becoming increasingly clear that insufficient accumulation of skeletal mass by young adulthood predisposes a person to low bone mass and subsequently to fractures later in life as age related and menopause-related bone loss ensue. In this article we 1) explain the role of inadequate peak bone mass as a major risk factor for osteoporosis and 2) give an overview of factors leading to osteoporosis by decreasing bone mass. Special emphasis has been put on iatrogenic osteoporosis which is frequently neglected because of the fact that the responsible agents often are not known as to be deleterious to the skeleton: among others, glucocorticoids, thyroid hormones and antiepileptics adversely affect bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To compare the effects of deflazacort (DEFLA) vs. prednisone (PRED) on bone mineral density (BMD), body composition, and lipids, 24 patients with end-stage renal disease were randomized in a double blind design and followed 78 weeks after kidney transplantation. BMD and body composition were assessed using dual energy x-ray absorptiometry. Seventeen patients completed the study. Glucocorticosteroid doses, cyclosporine levels, rejection episodes, and drop-out rates were similar in both groups. Lumbar BMD decreased more in PRED than in DEFLA (P < 0.05), the difference being particularly marked after 24 weeks (9.1 +/- 1.8% vs. 3.0 +/- 2.4%, respectively). Hip BMD decreased from baseline in both groups (P < 0.01), without intergroup differences. Whole body BMD decreased from baseline in PRED (P < 0.001), but not in DEFLA. Lean body mass decreased by approximately 2.5 kg in both groups after 6-12 weeks (P < 0.001), then remained stable. Fat mass increased more (P < 0.01) in PRED than in DEFLA (7.1 +/- 1.8 vs. 3.5 +/- 1.4 kg). Larger increases in total cholesterol (P < 0.03), low density lipoprotein cholesterol (P < 0.01), lipoprotein B2 (P < 0.03), and triglycerides (P = 0.054) were observed in PRED than in DEFLA. In conclusion, using DEFLA instead of PRED in kidney transplant patients is associated with decreased loss of total skeleton and lumbar spine BMD, but does not alter bone loss at the upper femur. DEFLA also helps to prevent fat accumulation and worsening of the lipid profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the data of the 3rdresearch expedition of the European Dry Grasslands Group (EDGG), which was conducted in 2011 in two contrasting areas in NW Bulgarian mountains. The aim was to collect plot data for comparing Bulgarian dry grasslands with those of other parts of Europe in terms of syntaxonomy and biodiversity. We sampled 15 nested-plot series (0.0001–100 m²) and 68 normal plots(10 m²) covering the full variety of dry grassland types occurring in the Vratsa area (Balkan Mts.) and the Koprivshtitsa area (Sredna Gora Mt.). In the plots all vascular plants, terricolous non-vascular plants and a set of soil and other environmental parameters were determined. By applying modified TWIN-SPAN, we distinguished 10 floristically well characterised vegetation types at the association level. After comparison with the regional and European literature, we propose to place them within three classes and five orders: Festuco-Brometea with the orders Stipo pulcherrimae-Festucetalia pallentis (xerophilous dry grasslands of base-rich rocks; alliance Saturejion montanae), Brachypodietalia pinnate (meso-xeric, basiphilous grasslands; alliances Cirsio-Brachypodion pinnate and Chyrsopogono grylli-Danthonion calycinae),Calluno-Ulicetea with the order Nardetalia stricae (lowland to montane Nardus swards; alliance Violion caninae), and Koelerio-Corynephoretea with the orders Sedo-Scleranthetalia (open communities of skeleton-rich, acidic soils; alliance unclear) and Trifolioarvensis-Festucetalia ovinae(closed, meso-xeric, acidophilous grasslands; alliance Armerio rumelicae-Potentillion). The Violion caninae with the association Festuco rubrae-Genistelletum sagittalisis reported from Bulgaria for the first time, while the two occurring Koelerio-Corynephoretea communities are described as new associations (Cetrario aculeatae-Plantaginetum radicatae, Plantagini radicatae-Agrostietum capillaris). According to DCA the main floristic gradient was largely determined by soil conditions, differentiating the Festuco-Brometea communities on soils with high pH and high humus content from the Koelerio-Corynephoretea communities on acidic, humus-poor soils, while the Calluno-Ulicetea stands are the connecting link. At 10 m² Festuco-Brometea and Calluno-Ulicetea stands were richer in species across all investigated taxa and in vascular plants than Koelerio-Corynephoretea stands; the latter were richest in lichen species, while bryophyte richness did not differ significantly among syntaxa. Among the Bulgarian classes, the species-area relationships tended to be steepest in the Festuco-Brometea (i.e. highest beta diversity), but both alpha and beta diversity clearly fell behind the Festuco-Brometea communities in the Transylvanian Plateau, Romania, located less than 500 km north of the study region. Overall, our study contributes to a more adequate placement of the Bulgarian dry grasslands in the European syntaxonomic system and provides valuable data for large-scale analyses of biodiversity patterns

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, the anatomical and morphological features of the acetabulum in infancy and childhood are presented. The pathology and treatment of older children and adolescents is deliberately not covered, because the fracture morphology and treatment of patients aged 13 to 15 years is based on the criteria of adult medicine. Especially in the younger child, the anatomical differences are of particular importance. The younger the child is, the more difficult the diagnosis. Therefore today, MRI examinations should be generous used, even if anesthesia is necessary. If the injured child is hemodynamic stable, anesthesia can be electively used for a more complex diagnosis. Acetabular fractures are particularly problematic in infancy because even with optimal treatment and perfect reduction growth disturbances can occur. These manifest as so-called secondary dysplasia. During treatment, care should be taken to ensure that a surgical team having experience with the infant and juvenile skeleton is available and that appropriate implants are available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With improving clinical CT scanning technology, the accuracy of CT-based finite element (FE) models of the human skeleton may be ameliorated by an enhanced description of apparent level bone mechanical properties. Micro-finite element (μFE) modeling can be used to study the apparent elastic behavior of human cancellous bone. In this study, samples from the femur, radius and vertebral body were investigated to evaluate the predictive power of morphology–elasticity relationships and to compare them across different anatomical regions. μFE models of 701 trabecular bone cubes with a side length of 5.3 mm were analyzed using kinematic boundary conditions. Based on the FE results, four morphology–elasticity models using bone volume fraction as well as full, limited or no fabric information were calibrated for each anatomical region. The 5 parameter Zysset–Curnier model using full fabric information showed excellent predictive power with coefficients of determination ( r2adj ) of 0.98, 0.95 and 0.94 of the femur, radius and vertebra data, respectively, with mean total norm errors between 14 and 20%. A constant orthotropy model and a constant transverse isotropy model, where the elastic anisotropy is defined by the model parameters, yielded coefficients of determination between 0.90 and 0.98 with total norm errors between 16 and 25%. Neglecting fabric information and using an isotropic model led to r2adj between 0.73 and 0.92 with total norm errors between 38 and 49%. A comparison of the model regressions revealed minor but significant (p<0.01) differences for the fabric–elasticity model parameters calibrated for the different anatomical regions. The proposed models and identified parameters can be used in future studies to compute the apparent elastic properties of human cancellous bone for homogenized FE models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mycobacterial cell envelope is fascinating in several ways. First, its composition is unique by the exceptional lipid content, which consists of very long-chain (up to C90) fatty acids, the so-called mycolic acids, and a variety of exotic compounds. Second, these lipids are atypically organized into a Gram-negative-like outer membrane (mycomembrane) in these Gram-positive bacteria, as recently revealed by CEMOVIS, and this mycomembrane also contains pore-forming proteins. Third, the mycolic acids esterified a holistic heteropolysaccharide (arabinogalacan), which in turn is linked to the peptidoglycan to form the cell wall skeleton (CWS). In slow-growing pathogenic mycobacterial species, this giant structure is surrounded by a capsular layer composed mainly of polysaccharides, primarily a glycogen-like glucan. The CWS is separated from the plasma membrane by a periplasmic space. A challenging research avenue for the next decade comprises the identification of the components of the uptake and secretion machineries and the isolation and biochemical characterization of the mycomembrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer represents the most commonly diagnosed malignancies in American men and is the second leading cause of male cancer deaths. The overall objectives of this research were designed to understand the cellular and molecular mechanisms of prostatic carcinoma growth and progression. This dissertation was divided into two major parts: (1) to clone and characterize soluble factor(s) associated with bone that may mediate prostatic carcinoma growth and progression; (2) to investigate the roles of extracellular matrix in prostatic carcinogenesis.^ The propensity of prostate cancer cells to metastasize to the axial skeleton and the subsequent osteoblastic reactions observed in the bone indicate the possible reciprocal cellular interaction between prostate cancer cells and the bone microenvironment. To understand the molecular and cellular basis of this interaction, I focused on the identification and cloning of soluble factor(s) from bone stromal cells that may exert direct mitogenic action on cultured prostate cells. A novel BPGF-1 gene expressed specifically by bone and male accessory sex organs (prostate, seminal vesicles, and coagulating gland) was identified and cloned.^ The BPGF-1 was identified and cloned from a cDNA expression library prepared from a human bone stromal cell line, MS. The conditioned medium (CM) of this cell line contains mitogenic materials that induce human prostate cancer cell growth both in vivo and in vitro. The cDNA expression library was screened by an antibody prepared against the mitogenic fraction of the CM.^ The cloned BPGF-1 cDNA comprises 3171 nucleotides with a single open reading frame of 1620 nucleotides encoding 540 amino acids. The BPGF-1 gene encodes two transcripts (3.3 and 2.5 kb) with approximately equal intensity in human cells and tissues, but only one transcript (2.5 kb) in rat and mouse tissues. Southern blot analysis of human genomic DNA revealed a single BPGF-1 gene. The BPGF-1 gene is expressed predominantly in bone and seminal vesicles, but at a substantially lower level in prostate. Polyclonal antibodies generated from synthetic peptides that correspond to the nucleotide sequences of the cloned BPGF-1 cDNA reacted with a putative BPGF-1 protein with an apparent molecular weight of 70 kDa. The conditioned media isolated from COS cells transfected with BPGF-1 cDNA stimulated the proliferation and increased the anchorage-independent growth of prostate epithelial cells. These findings led us to hypothesize that BPGF-1 expression in relevant organs, such as prostate, seminal vesicles, and bone, may lead to local prostate cancer growth, metastasis to the seminal vesicles, and subsequently dissemination to the skeleton.^ To assess the importance of extracellular matrix in prostatic carcinogenesis, the role of extracellular matrix in induction of rat prostatic carcinoma growth in vivo was evaluated. NbE-1, a nontumorigenic rat prostatic epithelial cell line, was induced to form carcinoma in athymic nude hosts by coinjecting them with Matrigel and selected extracellular matrix components. Induction of prostatic tumor formation by laminin and collagen IV was inhibited by their respective antibodies. Prostatic epithelial cells cloned from the tumor tissues were found to form tumors in athymic nude hosts in the absence of exogenously added extracellular matrix. These results suggest that extracellular matrix induce irreversibly prostatic epithelial cells that behave distinctively different from the parental prostatic epithelial cell line. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT) display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA) correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. METHODS Randomly selected women between 20-40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. RESULTS Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m(2)). The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R  =  0.798). The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. CONCLUSION This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone. Whether these indexes are suitable for better predictions of the fracture risk deserves further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of cartilage and bone involves sequential processes in which undifferentiated mesenchyme aggregates into primordial condensations which subsequently grow and differentiate, resulting in morphogenesis of the adult skeleton. While much has been learned about the structural molecules which comprise cartilage and bone, little is known about the nuclear factors which regulate chondrogenesis and osteogenesis. MHox is a homeobox-containing gene which is expressed in the mesenchyme of facial, limb, and vertebral skeletal precursors during mouse embryogenesis. MHox expression has been shown to require epithelial-derived signals, suggesting that MHox may regulate the epithelial-mesenchymal interactions required for skeletal organogenesis. To determine the functions of MHox, we generated a loss-of-function mutation in the MHox gene. Mice homozygous for a mutant MHox allele exhibit defects of skeletogenesis, involving the loss or malformation of craniofacial, limb and vertebral skeletal structures. The affected skeletal elements are derived from the cranial neural crest, as well as somitic and lateral mesoderm. Analysis of the mutant phenotype during ontogeny demonstrated a defect in the formation or growth of chondrogenic and osteogenic precursors. These findings provide evidence that MHox regulates the formation of preskeletal condensations from undifferentiated mesenchyme. In addition, generation of mice doubly mutant for the MHox and S8 homeobox genes reveal that these two genes interact to control formation of the limb and craniofacial skeleton. Mice carrying mutant alleles for S8 and MHox exhibit an exaggeration of the craniofacial and limb phenotypes observed in the MHox mutant mouse. Thus, MHox and S8 are components of a combinatorial genetic code controlling generation of the skeleton of the skull and limbs. ^