926 resultados para high pressure homogenization
Resumo:
Ultrafiltration (UF) is widely applied in different separation processes in the pulp and paper industry. The growing need to protect the environment, a lack of pure water and an interest in producing high-value chemicals from compounds present in process waters will probably lead to an increase in the use of UF in the pulp and paper industry. The efficiency and cost-effectiveness of a UF process depends on the applied membrane. The membrane should have a high and stable filtration capacity, a particular selectivity and a long operational lifetime. To meet these requirements a membrane should have a low fouling tendency. In addition, it should withstand the prevailing operational and chemical conditions. This thesis evaluates the performance and applicability of the regenerated cellulose (RC) membranes 00030T and C2 in the treatment of pulp and paper mill process waters based on the requirements above. The results demonstrated that both the tested RC membranes fulfilled well the requirement of high filtration capacity. In addition, in the filtration of a paper mill clear filtrate (CF) the RC membranes were not as greatly affected by variations in the CF quality as a polysulphone membrane. Furthermore, due to their extreme hydrophilicity and weak charge the fouling tendency of the membranes can be expected to be low in pulp and paper mill filtration applications. It is, however, known that fouling cannot be totally avoided even when the membrane is chosen very carefully. This study indicated that carbohydrates influenced negatively on permeability and caused fouling in the filtration of groundwood mill circulation water. Thus, a pre-treatment effectively reducing the amount of carbohydrates might help to maintain a stable capacity. However, the results of the thesis also showed that the removal of some of the possible foulants might just increase the harmful effect of others. Multivariate examination was useful in the understanding of the complicated factors causing the unstable capacity. The thesis also revealed that the 00030T and C2 membranes can be used at high pressure (max. tested pressure 12 bar). The C2 membrane, having a sponge-like substructure, was more pressure resistant, and its performance was more stable at high pressure compared to the UCO30T membrane containing macrovoids in its substructure. Both tested membranes can, according to the results, also be used at temperatures as high as 70°C in acidic, neutral and alkaline conditions. However, the use at extreme conditions might cause faster ageing of the membranes compared to ageing in neutral conditions. The thesis proved that both the tested RC membranes are very suitable for pulp and paper mill applications and that the membranes can be utilised in processes operating in challenging conditions. Thus, they could be used in more demanding applications than supposed earlier.
Resumo:
Under chronic stress, carotenoid-based colouration has often been shown to fade. However, the ecological and physiological mechanisms that govern colouration still remain largely unknown. Colour changes may be directly induced by the stressor (for example through reduced carotenoid intake) or due to the activation of the physiological stress response (PSR, e.g. due to increased blood corticosterone concentrations). Here, we tested whether blood corticosterone concentration affected carotenoid-based colouration, and whether a trade-off between colouration and PSR existed. Using the common lizard (Lacerta vivipara), we correlatively and experimentally showed that elevated blood corticosterone levels are associated with increased redness of the lizard's belly. In this study, the effects of corticosterone did not depend on carotenoid ingestion, indicating the absence of a trade-off between colouration and PSR for carotenoids. While carotenoid ingestion increased blood carotenoid concentration, colouration was not modified. This suggests that carotenoid-based colouration of common lizards is not severely limited by dietary carotenoid intake. Together with earlier studies, these findings suggest that the common lizard's carotenoid-based colouration may be a composite trait, consisting of fixed (e.g. genetic) and environmentally elements, the latter reflecting the lizard's PSR.
Resumo:
Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
This article describes the combination of low- and high-pressure flow systems for the determination of Magnesium, Calcium and Strontium by flame atomic absorption spectrometry (FAAS). In the low-pressure system a short C-18 RP column (length 0,5 cm) was utilized for the preconcentration/matrix separation step, xylenol orange was used as chelating agent and tetrabutylamonium acetate for ion pair formation. The hydraulic high pressure nebulization (HHPN) was used for sample transport and sample introduction in the high pressure system. The repeatabilities and detection limits for Mg, Ca and Sr were determined and compared with those obtained by pneumatic nebulization (PN). The results show that the detection limits obtained using the HHPN for Mg, Ca and Sr are between 1.5 to 2 times better than those obtained by PN when the signal transient was measured in area. The system presented a sampling frequency of 130 h-1 for direct determination of Mg, Ca or Sr in samples of saturated sodium chloride used in the production of chlorine and sodium hydroxide.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Organic compounds responsible for the color of wastewaters are usually refractory to biological digestion. In this paper the photo-assisted electrolysis process is used for color removal from three of the most colored wastewaters, which are daily generated in large amounts: the E1 bleach Kraft mill effluent, a textile reactive dye effluent and a landfill leachate. Electrolysis was carried out at 26,5 mA cm-2 in a flow reactor in which the anode surface was illuminated by a 400 W high pressure Hg bulb. In all experiments 70-75% of color reduction was observed which was also followed by a net organic load oxidation.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Today satellites propulsion is based on the use of monopropellant and/or bipropellant chemical systems. The maneuvering of satellite is based on the hydrazine decomposition micropropulsors catalyzed by metallic iridium supported on g-alumina. This reaction is a surface reaction and is strongly exothermic and implies that the operation of the micropropulsor is controlled by the mass and heat diffusions. For this reason and for the fact that the propulsor operation is frequently in pulsed regime, the catalyst should support high pressure and temperature variations within a short time period. The performance and the durability of the commercial catalyst are jeopardized by the low thermal conductivity of the alumina. The low thermal conductivity of the alumina support restricts the heat diffusion and leads to the formation of hot spots on the catalyst surface causing the metal sintering and/or fractures of the support, resulting in loss of the activity and catalyst destruction. This work presents the synthesis and characterization of new carbon composite support for the active element iridium, in substitution of the commercial catalysts alumina based support. These supports are constituted of carbon nanofibers (30 to 40 nm diameter) supported on a macroscopic carbon felt. These materials present high thermal conductivity and mechanical resistance, as well as the easiness to be shaped with different macroscopic shapes. The mechanical stability and the performance of the iridium supported on the carbon composite support, evaluated in a laboratory scale test in hydrazine decomposition reaction, are superior compared to the commercial catalyst.
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
This paper describes the analytical methods for determination of total chlorogenic acid (CGA) and their individual isomers. Spectrofotometric methods are adequate for total CGA analysis in green coffee but they can provide inflated results for coffee products. High pressure liquid chromatography (HPLC) with gel permeation column and ultraviolet (UV) monitoring is adequate for the simultaneous analysis of total CGA, alkaloids and sugars in coffee products. HPLC-UV-reversed phase is a simple, rapid and precise method for the determination of the individual isomers of CGA. Gas chromatography (GC) also is applied to the analysis of the individual isomers but phenolic acids need to be derivatized before analysis. Both HPLC- and GC-mass spectrometry provide an unequivocal identification of the individual isomers. The capillary electrophoresis method is simple, rapid and adequate to the simultaneous analysis of polyphenols and xanthines. Advantages and limitations of each method are discussed throughout the text.
Resumo:
The scope of this study encompasses an overview of the principles of unified chromatography as well as the principles of chromatographic techniques as applied to unified systems, which include gas chromatography, liquid chromatography, supercritical fluid chromatography, high temperature and high pressure liquid chromatography, micro-liquid chromatography, enhanced fluidity chromatography, and solvating gas chromatography. Theoretical considerations and individual instrumental parameters such as mobile phase, sample introduction system, columns, and detection system are also discussed. Future applications of this separation approach are discussed.
Resumo:
This review presents a brief account concerning the production, characterization and evolution of the knowledge in the area of diamond and boron-doped diamond films. The most important methods used for the growth of these films, such as chemical vapor deposition and high pressure/high temperature systems, as well as the several kinds of reactors which can be employed are reviewed. However, larger emphasis is given to the CVD method. Morphological, structural and electric properties of these films, as well as their role in the performance of voltammetric electrodes for electrochemistry and electroanalytical chemistry are also discussed.
Resumo:
Diplomityön tavoitteena on selvittää Loviisan ydinvoimalaitoksen höyryturbiinin hyötysuhteen parantamismahdollisuuksia. Työn kuvaan liittyvät oleellisesti höyryturbiinin siipivyöhykkeiden nopeuskolmioiden sekä hyötysuhteiden laskenta. Höyryturbiinien kehityskaarta sekä turbiinin häviökerrointen laskentayhtälöitä on esitetty useasta eri lähteestä ja vuosikymmeniltä. Työssä selvitettiin uusimpia ydinvoimalaitosten kostea höyryturbiinien suunnitteluperusteita lukuisista eri lähteistä. Kaikkien lähteiden mukaan kostean höyryn alueella tapahtuvaa paisuntaa on haasteellista mallintaa. Työssä on esitelty artikkeleissa tulleita eri näkökulmia höyryturbiinien suorituskyvyn parantamiseksi, sekä rakenteellisia että laskennallisia. Työssä esitellään monia turbiinin virtauksen ja suorituskyvyn laskentamenetelmiä. Esimerkiksi Baumannin säännön laskenta on yksinkertainen tapa käsitellä turbiinin suorituskykyä kostean höyryn alueella. Keskeisimpiä tehtyjä havaintoja oli se, että korkeapaineturbiinin ensimmäisestä vaiheesta löytyi mahdollista parannuspotentiaalia Loviisaan ydinvoimalaitoksen tehon lisäämiseksi. Ensimmäisessä vaiheessa on oletettu siipien olevan Laval –tyyppisiä, mutta käytännössä näin ei ole. Korkeapaineturbiinin nykyisen turbosuuttimen toimintaa voitaisiin tehostaa. Lisäksi Loviisan matalapaineturbiinin viimeisen siipivaiheen jälkeen aiheutuu suuret ulosvirtaushäviöt. Osa suurinopeuksisen virtauksen energiasta pystyttäisiin kuitenkin hyödyntämään vielä ulosvirtauskanavassa olevalla diffuusorilla.
Resumo:
Engineering and pricing of large recovery boiler were studied in this work. Engineering was carried out with Anita 4.2 which is an engineering program of Andritz. Key initial values were chosen with previous studies. Primary target of this work was to find out the consequences that furnace dimensions and furnace screen vertical part has to boiler pricing. Boilers that were engineered had different rate of furnace width and depth and different heat transfer plate count. Boiler balances were invariable. Boilers with different vertical screen construction were also calculated. First variation was boiler with vertical screen up to furnace roof. Other variation was to connect vertical screen to Pre-boiler generating bank inlet tubes. Total prices were calculated to engineered boilers. Pricing was sort out to heat transfers, high pressure pipes, steel structures, auxiliary equipments and civil/structural costs. This study did not notice parts of the boiler which costs do not vary with the construction of the boiler. Heat transfers had the largest share of costs. Boiler building had the most significant differences between the boilers. Furnace screen had also significant role especially to costs of the boiler building.