942 resultados para hierarchical Bayesian models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial distribution of self-employment in India: evidence from semiparametric geoadditive models, Regional Studies. The entrepreneurship literature has rarely considered spatial location as a micro-determinant of occupational choice. It has also ignored self-employment in developing countries. Using Bayesian semiparametric geoadditive techniques, this paper models spatial location as a micro-determinant of self-employment choice in India. The empirical results suggest the presence of spatial occupational neighbourhoods and a clear north–south divide in self-employment when the entire sample is considered; however, spatial variation in the non-agriculture sector disappears to a large extent when individual factors that influence self-employment choice are explicitly controlled. The results further suggest non-linear effects of age, education and wealth on self-employment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on Bayesian Networks, methods were created that address protein sequence-based bacterial subcellular location prediction. Distinct predictive algorithms for the eight bacterial subcellular locations were created. Several variant methods were explored. These variations included differences in the number of residues considered within the query sequence - which ranged from the N-terminal 10 residues to the whole sequence - and residue representation - which took the form of amino acid composition, percentage amino acid composition, or normalised amino acid composition. The accuracies of the best performing networks were then compared to PSORTB. All individual location methods outperform PSORTB except for the Gram+ cytoplasmic protein predictor, for which accuracies were essentially equal, and for outer membrane protein prediction, where PSORTB outperforms the binary predictor. The method described here is an important new approach to method development for subcellular location prediction. It is also a new, potentially valuable tool for candidate subunit vaccine selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The twin arginine translocation (TAT) system ferries folded proteins across the bacterial membrane. Proteins are directed into this system by the TAT signal peptide present at the amino terminus of the precursor protein, which contains the twin arginine residues that give the system its name. There are currently only two computational methods for the prediction of TAT translocated proteins from sequence. Both methods have limitations that make the creation of a new algorithm for TAT-translocated protein prediction desirable. We have developed TATPred, a new sequence-model method, based on a Nave-Bayesian network, for the prediction of TAT signal peptides. In this approach, a comprehensive range of models was tested to identify the most reliable and robust predictor. The best model comprised 12 residues: three residues prior to the twin arginines and the seven residues that follow them. We found a prediction sensitivity of 0.979 and a specificity of 0.942.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic precalibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section of the M40 motorway and its surrounding area in the U.K. The efficiency of the method stems from the use of emulators of the stochastic microsimulator, which provides fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator runs required, and the emulators' probabilistic construction allows for the consideration of the extra uncertainty introduced by the approximation. It is shown that automatic precalibration of this real-world microsimulator, using turn-count observational data, is possible, considering all parameters at once, and that this precalibrated microsimulator improves on the fit to observations compared with the traditional expertly tuned microsimulation. © 2000-2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our approach for knowledge presentation is based on the idea of expert system shell. At first we will build a graph shell of both possible dependencies and possible actions. Then, reasoning by means of Loglinear models, we will activate some nodes and some directed links. In this way a Bayesian network and networks presenting loglinear models are generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple hierarchical models of representative democracies in which, for instance, voters elect county representatives, county representatives elect district representatives, district representatives elect state representatives and state representatives a president, reduces the number of electors a representative is answerable for, and therefore, considering each level separately, these models could come closer to direct democracy. In this paper we show that worst case policy bias increases with the number of hierarchical levels. This also means that the opportunities of a gerrymanderer increase in the number of hierarchical levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic.^ This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.