973 resultados para haemocyte activities
Resumo:
The replicase polyproteins, pp1a and pp1ab, of porcine Transmissible gastroenteritis virus (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by in vitro translation experiments and protein sequencing, that the papain-like protease 1, PL1pro, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys1093, cleaves the nsp2|nsp3 site at 879Gly|Gly880. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1pro was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1''-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp1320–Ser1486.
Resumo:
The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.
Resumo:
Nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) encode a nonstructural protein, called nsp10 in arteriviruses and nsp13 in coronaviruses, that is comprised of a C-terminal superfamily 1 helicase domain and an N-terminal, putative zinc-binding domain (ZBD). Previously, mutations in the equine arteritis virus (EAV) nsp10 ZBD were shown to block arterivirus reproduction by disrupting RNA synthesis and possibly virion biogenesis. Here, we characterized the ATPase and helicase activities of bacterially expressed mutant forms of nsp10 and its human coronavirus 229E ortholog, nsp13, and correlated these in vitro activities with specific virus phenotypes. Replacement of conserved Cys or His residues with Ala proved to be more deleterious than Cys-for-His or His-for-Cys replacements. Furthermore, denaturation-renaturation experiments revealed that, during protein refolding, Zn2+ is essential for the rescue of the enzymatic activities of nidovirus helicases. Taken together, the data strongly support the zinc-binding function of the N-terminal domain of nidovirus helicases. nsp10 ATPase/helicase deficiency resulting from single-residue substitutions in the ZBD or deletion of the entire domain could not be complemented in trans by wild-type ZBD, suggesting a critical function of the ZBD in cis. Consistently, no viral RNA synthesis was detected after transfection of EAV full-length RNAs encoding ATPase/helicase-deficient nsp10 into susceptible cells. In contrast, diverse phenotypes were observed for mutants with enzymatically active nsp10, which in a number of cases correlated with the activities measured in vitro. Collectively, our data suggest that the ZBD is critically involved in nidovirus replication and transcription by modulating the enzymatic activities of the helicase domain and other, yet unknown, mechanisms.
Resumo:
The human coronavirus 229E replicase gene encodes a protein, p66HEL, that contains a putative zinc finger structure linked to a putative superfamily (SF) 1 helicase. A histidine-tagged form of this protein, HEL, was expressed using baculovirus vectors in insect cells. The purified recombinant protein had in vitro ATPase activity that was strongly stimulated by poly(U), poly(dT), poly(C), and poly(dA), but not by poly(G). The recombinant protein also had both RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. The DNA helicase activity of the enzyme preferentially unwound 5'-oligopyrimidine-tailed, partial-duplex substrates and required a tail length of at least 10 nucleotides for effective unwinding. The combined data suggest that the coronaviral SF1 helicase functionally differs from the previously characterized RNA virus SF2 helicases.
Resumo:
A novel lysozyme exhibiting antifungal activity and with a molecular mass of 14.4 kDa in SDS–polyacrylamide gel electrophoresis was isolated from mung bean (Phaseolus mungo) seeds using a procedure that involved aqueous extraction, ammonium sulfate precipitation, ion exchange chromatography on CM-Sephadex, and high-performance liquid chromatography on POROS HS-20. Its N-terminal sequence was very different from that of hen egg white lysozyme. Its pI was estimated to be above 9.7. The specific activity of the lysozyme was 355 U/mg at pH 5.5 and 30 °C. The lysozyme exhibited a pH optimum at pH 5.5 and a temperature optimum at 55 °C. It is reported herein, for the first time, that a novel plant lysozyme exerted an antifungal action toward Fusarium oxysporum, Fusarium solani, Pythium aphanidermatum, Sclerotium rolfsii, and Botrytis cinerea, in addition to an antibacterial action against Staphylococcus aureus.
Resumo:
Background. Obesity appears to be more common among people with intellectual disabilities, with few studies focusing on achieving weight reduction. Aim. Firstly, to follow up people identified as overweight and obese following special health screening clinics and to determine the actions taken. Secondly, to evaluate the impact of health promotion classes on participants' weight loss. Methods. A clinic led by two learning disbaility nurses was held for all people aged 10 years and over (n=464) who attended special services within the area of one Health and Social Services Trust in Northern Ireland. In a second study, the nurses organised health promotion classes for 20 people over a 6 - 8 week period. Findings. The health screen identified 64% of adults and 26% of 10 - 19 year olds as being overweight or obese. Moreover, those aged 40 - 49 years who were obese had significantly higher levels of blood pressure. However, information obtained from a follow up questionnaire sent after 3 months suggested that of the 122 people identified for wiehgt reduciton, action had been taken for only 34% of them and only three were reported to have lost weight. The health promotion classes, however, led to a significant reduction in weight and body mass index scores. Conclusion. Health screening per se has limited impact on reducing obesity levels in this client group. Rather, health personnel such as general practitioners, nurses and health promotion staff need to work in partnership with service staff, carers and people with intellectual disabiltieis to create more active lifestyles.
Resumo:
Throughout the last few decades, sulfate concentrations in streamwater have received considerable attention due to their dominant role in anthropogenic acidification of surface waters. The objectives of this study conducted in the Oldman River Basin in Alberta (Canada) were to determine the influence of geology, land use and anthropogenic activities on sources, concentrations and fluxes of riverine sulfate on a watershed scale. This was achieved by combining hydrological, chemical and isotopic techniques. Surface water samples were collected from the main stem and tributaries of the Oldman River on a monthly basis between December 2000 and March 2003 and analyzed for chemical and isotopic compositions. At a given sampling site, sulfate sources were primarily dependent on geology and did not vary with time or flow condition. With increasing flow distance a gradual shift from ?34S values > 10 ‰ and ?18O values > 0 ‰ of riverine sulfate indicating evaporite dissolution and soil-derived sulfate in the predominantly forested headwaters, to negative ?34S and ?18O values suggested that sulfide oxidation was the predominant sulfate source in the agriculturally used downstream part of the watershed. Significant increases in sulfate concentrations and fluxes with downstream distance were observed, and were attributed to anthropogenically enhanced sulfide oxidation due to the presence of an extensive irrigation drainage network with seasonally varying water levels. Sulfate-S exports in an artificially drained subbasin (64 kg S/ha/yr) were found to exceed those in a naturally drained subbasin (4 kg S/ha/yr) by an order of magnitude. Our dataset suggests that the naturally occurring process of sulfide oxidation has been enhanced in the Oldman River Basin by the presence of an extensive network of drainage and irrigation canals.
Resumo:
The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 µg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37°C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 µg/ml, followed by cinnamon oil (26.2 µg/ml), oregano oil (68.2 µg/ml), carvacrol (72.2 µg/ml), 2,5-dihydroxybenzaldehyde (74 µg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 µg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed.
Resumo:
The electron beam ion trap (EBIT) in Tokyo was constructed about 10 years after the first EBIT at Lawrence Livermore National Laboratory was built, and has been being stably operated since then. In this paper, we present recent experimental activities at the Tokyo EBIT. In particular, experiments utilizing slow, very highly charged ion beams extracted from the EBIT are reported.