952 resultados para gravity gradient
Resumo:
This paper explores the performance of sliding-window based training, termed as semi batch, using multilayer perceptron (MLP) neural network in the presence of correlated data. The sliding window training is a form of higher order instantaneous learning strategy without the need of covariance matrix, usually employed for modeling and tracking purposes. Sliding-window framework is implemented to combine the robustness of offline learning algorithms with the ability to track online the underlying process of a function. This paper adopted sliding window training with recent advances in conjugate gradient direction with application of data store management e.g. simple distance measure, angle evaluation and the novel prediction error test. The simulation results show the best convergence performance is gained by using store management techniques. © 2012 Springer-Verlag.
Resumo:
High-resolution imaging of a dipole source in stratified medium based on negative refraction is presented in this paper. Compensation of the material parameter contrast at the stratified media interface is achieved using a gradient phase profiled conjugating lens (GPCL). It is shown both analytically and numerically that the phase gradient applied across the GPCL positioned at the interface of vertically stratified media enables a high-quality image of a dipole source in a mirror symmetric position with respect to the lens plane. The analytical closed form expression of the phase gradient function is derived using Huygens-Kirchhoff principle. The result is applicable to media with arbitrary stratification and material parameters, including lossy materials. The mechanism for formation of the dipole image in the stratified medium and aberration due to the dielectric contrast at the interface, particularly electromagnetic loss, is discussed in detail. The efficacy of gradient phase and amplitude aberration compensations mechanisms available through the GPCL is articulated. The results of the study are of importance in a wide range of imaging problems in stratified media for medical, civil, and military applications.
Resumo:
High-order harmonics and attosecond pulses of light can be generated when ultraintense, ultrashort laser pulses reflect off a solid-density plasma with a sharp vacuum interface, i.e., a plasma mirror. We demonstrate experimentally the key influence of the steepness of the plasma-vacuum interface on the interaction, by measuring the spectral and spatial properties of harmonics generated on a plasma mirror whose initial density gradient scale length L is continuously varied. Time-resolved interferometry is used to separately measure this scale length.
Resumo:
Ab initio total energy calculations have been performed for CO chemisorption on Pd(110). Local density approximation (LDA) calculations yield chemisorption energies which are significantly higher than experimental values but inclusion of the generalised gradient approximation (GGA) gives better agreement. In general, sites with higher coordination of the adsorbate to surface atoms lead to a larger degree of overbinding with LDA, and give larger corrections with GGA. The reason is discussed using a first-order perturbation approximation. It is concluded that this may be a general failure of LDA for chemisorption energy calculations. This conclusion may be extended to many surface calculations, such as potential energy surfaces for diffusion.
Resumo:
The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.
Resumo:
Many researchers have investigated the flow and segregation behaviour in model scale experimental silos at normal gravity conditions. However it is known that the stresses experienced by the bulk solid in industrial silos are high when compared to model silos. Therefore it is important to understand the effect of stress level on flow and segregation behaviour and establish the scaling laws governing this behaviour. The objective of this paper is to understand the effect of gravity on the flow and segregation behaviour of bulk solids in a silo centrifuge model. The materials used were two mixtures composed of Polyamide and glass beads. The discharge of two bi-disperse bulk solids in a silo centrifuge model were recorded under accelerations ranging from 1g to 15g. The velocity distribution during discharge was evaluated using Particle Image Velocimetry (PIV) techniques and the concentration distribution of large and small particles were obtained by imaging processing techniques. The flow and segregation behaviour at high gravities were then quantified and compared with the empirical equations available in the literature.
Resumo:
Stream bed metal deposits affect the taxon richness, density and taxonomic diversity of primary and secondary producers by a variety of direct or indirect abiotic and biotic processes but little is known about the relative importance of these processes over a deposit metal concentration gradient. Inorganic matter (IM), algal and non-photosynthetic detrital (NPD) dry biomasses were estimated for 10 monthly samples, between 2007 and 2008, from eight sites differing in deposit density. Invertebrate abundance, taxon richness and composition were also determined. Relations between these variables were investigated by canonical correspondence analysis (CCA), generalized estimating equation models and path analysis. The first CCA axis correlates with deposit density and invertebrate abundance, with lumbriculids and chironomids increasing in abundance with deposit density and all other taxa declining. Community structure changes significantly above a deposit density of approximately 8 mg cm, when algal biomass, invertebrate richness and diversity decline. Invertebrate richness and diversity were determined by direct effects of NPD biomass and indirect effects of IM. Algal biomass only had an effect on invertebrate abundance. Possible pH, oxygen, food and ecotoxicological effects of NPD biomass on the biota are discussed.