876 resultados para function and evolution
Resumo:
The eukaryotic translation initiation factor 2 alpha (eIF2α) is part of the initiation complex that drives the initiator amino acid methionine to the ribosome, a crucial step in protein translation. In stress conditions such as virus infection, endoplasmic reticulum (ER) stress, amino acid or heme deficiency eIF2α can be phosphorylated and thereby inhibit global protein synthesis. This adaptive mechanism prevents protein accumulation and consequent cytotoxic effects. Heme-regulated eIF2α kinase (HRI) is a member of the eIF2α kinase family that regulates protein translation in heme deficiency conditions. Although present in all tissues, HRI is predominantly expressed in erythroid cells where it remains inactive in the presence of normal heme concentrations. In response to heme deficiency, HRI is activated and phosphorylates eIF2α decreasing globin synthesis. This mechanism is important to prevent accumulation of heme-free globin chains which cause ER stress and apoptosis. RNA sequencing data from our group showed that in human islets and in primary rat beta cells HRI is the most expressed eIF2α kinase compared to the other family members. Despite its high expression levels, little is known about HRI function in beta cells. The aim of this project is to identify the role of HRI in pancreatic beta cells. This was investigated taking a loss-of-function approach. HRI knock down (KD) by RNA interference induced beta cell apoptosis in basal condition. HRI KD potentiated the apoptotic effects of palmitate or proinflammatory cytokines, two in vitro models for type 2 and type 1 diabetes, respectively. Increased cytokine-induced apoptosis was also observed in HRI-deficient primary rat beta cells. Unexpectedly, we observed a mild increase in eIF2α phosphorylation in HRI-deficient cells. The levels of mRNA or protein expression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) were not modified. HRI KD cells have decreased spliced X-box binding protein 1 (XBP1s), an important branch of the ER stress response. However, overexpression of XBP1s by adenovirus in HRI KD cells did not protect from HRI siRNA-induced apoptosis. HRI deficiency decreased phosphorylation of Akt and its downstream targets glycogen synthase kinase 3 (GSK3), forkhead box protein O1 (FOXO1) and Bcl-2-associated death promoter (BAD). Overexpression of a constitutively active form of Akt by adenovirus in HRI-deficient beta cells partially decreased HRI KD-mediated apoptosis. Interestingly, BAD silencing protected from apoptosis caused by HRI deficiency. HRI silencing in beta cells also induced JNK activation. These results suggest an important role of HRI in beta cell survival through modulation of the Akt/BAD pathway. Thus, HRI may be an interesting target to modulate beta cell fate in diabetic conditions.
Resumo:
We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, which is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict ∼10–100 of B-BH binaries to currently reside in the Galactic disc, among which around 1/3 contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be-BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding black hole (BH) binaries, with BH X-ray novae formation issue being the prime example. Future evolution of MWC 656 with an ∼5 M⊙ BH and with an ∼13 M⊙ main-sequence companion on an ∼60 d orbit may lead to the formation of a coalescing BH–NS (neutron star) system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to ∼0.2 yr−1. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH–NS binaries.
Resumo:
Magnetars are neutron stars in which a strong magnetic field is the main energy source. About two dozens of magnetars, plus several candidates, are currently known in our Galaxy and in the Magellanic Clouds. They appear as highly variable X-ray sources and, in some cases, also as radio and/or optical pulsars. Their spin periods (2–12 s) and spin-down rates (∼10−13–10−10 s s−1) indicate external dipole fields of ∼1013−15 G, and there is evidence that even stronger magnetic fields are present inside the star and in non-dipolar magnetospheric components. Here we review the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.
Resumo:
v.33:no.3(1974)