963 resultados para flood forecasting model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doutoramento em Economia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept beyond time-dependent measures to other variables of interest. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Ni ? no/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global climate change is predicted to have impacts on the frequency and severity of flood events. In this study, output from Global Circulation Models (GCMs) for a range of possible future climate scenarios was used to force hydrologic models for four case study watersheds built using the Soil and Water Assessment Tool (SWAT). GCM output was applied with either the "delta change" method or a bias correction. Potential changes in flood risk are assessed based on modeling results and possible relationships to watershed characteristics. Differences in model outputs when using the two different methods of adjusting GCM output are also compared. Preliminary results indicate that watersheds exhibiting higher proportions of runoff in streamflow are more vulnerable to changes in flood risk. The delta change method appears to be more useful when simulating extreme events as it better preserves daily climate variability as opposed to using bias corrected GCM output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

United States federal agencies assess flood risk using Bulletin 17B procedures which assume annual maximum flood series are stationary. This represents a significant limitation of current flood frequency models as the flood distribution is thereby assumed to be unaffected by trends or periodicity of atmospheric/climatic variables and/or anthropogenic activities. The validity of this assumption is at the core of this thesis, which aims to improve understanding of the forms and potential causes of non-stationarity in flood series for moderately impaired watersheds in the Upper Midwest and Northeastern US. Prior studies investigated non-stationarity in flood series for unimpaired watersheds; however, as the majority of streams are located in areas of increasing human activity, relative and coupled impacts of natural and anthropogenic factors need to be considered such that non-stationary flood frequency models can be developed for flood risk forecasting over relevant planning horizons for large scale water resources planning and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To compare the accuracy of different forecasting approaches an error measure is required. Many error measures have been proposed in the literature, however in practice there are some situations where different measures yield different decisions on forecasting approach selection and there is no agreement on which approach should be used. Generally forecasting measures represent ratios or percentages providing an overall image of how well fitted the forecasting technique is to the observations. This paper proposes a multiplicative Data Envelopment Analysis (DEA) model in order to rank several forecasting techniques. We demonstrate the proposed model by applying it to the set of yearly time series of the M3 competition. The usefulness of the proposed approach has been tested using the M3-competition where five error measures have been applied in and aggregated to a single DEA score.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task of forecasting semantic concepts in the research domain. Indeed, ontologies representing scientific disciplines contain only research topics that are already popular enough to be selected by human experts or automatic algorithms. They are thus unfit to support tasks which require the ability of describing and exploring the forefront of research, such as trend detection and horizon scanning. We address this issue by introducing the Semantic Innovation Forecast (SIF) model, which predicts new concepts of an ontology at time t + 1, using only data available at time t. Our approach relies on lexical innovation and adoption information extracted from historical data. We evaluated the SIF model on a very large dataset consisting of over one million scientific papers belonging to the Computer Science domain: the outcomes show that the proposed approach offers a competitive boost in mean average precision-at-ten compared to the baselines when forecasting over 5 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coastal area along the Emilia-Romagna (ER), in the Italian side of the northern Adriatic Sea, is considered to implement an unstructured numerical ocean model with the aim to develop innovative tools for the coastal management and a forecasting system for the storm surge risk reduction. The Adriatic Sea has been the focus of several studies because of its peculiar dynamics driven by many forcings acting at basin and local scales. The ER coast is particularly exposed to storm surge events. In particular conditions, winds, tides and seicehs may combine and contribute to the flooding of the coastal area. The global sea level rise expected in the next decades will increase even more the hazard along the ER and Adriatic coast. Reliable Adriatic and Mediterranean scale numerical ocean models are now available to allow the dynamical downscaling of very high-resolution models in limited coastal areas. In this work the numerical ocean model SHYFEM is implemented in the Goro lagoon (named GOLFEM) and along the ER coast (ShyfER) to test innovative solutions against sea related coastal hazards. GOLFEM was succesfully applied to analyze the Goro lagoon dynamics and to assess the dynamical effects of human interventions through the analysis of what-if scenarios. The assessment of storm surge hazard in the Goro lagoon was carried out through the development of an ensemble storm surge forecasting system with GOLFEM using forcing from different operational meteorological and ocean models showing the fundamental importance of the boundary conditions. The ShyfER domain is used to investigate innovative solutions against storm surge related hazard along the ER coast. The seagrass is assessed as a nature-based solution (NBS) for coastal protection under present and future climate conditions. The results show negligible effects on sea level but sensible effects in reducing bottom current velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This coupled model combines two state-of-the-art numerical models, NEMO for the oceanic component and WRF for the atmospheric component and implements them at an appropriate resolution. The oceanic model has been implemented starting from the Mediterranean Forecasting System with a resolution of 1/24° and the domain was extended to exactly match the grid of a newly implemented atmospheric model for the same area. The uncoupled ocean model has been validated against SST observed data, both in the simulation of an extreme event and in the short-term forecast of two seasonal periods. A new setup of the model was successfully tested in which the downward radiative fluxes were prescribed from atmospheric forecasts. Various physical schemes, domain, boundary, and initial conditions were tested with the atmospheric model to obtain the best representation of medicane Ianos. The heat fluxes calculated by the uncoupled models were compared to determine which setup gave the best energy balance between the components of the coupled model. The coupling strategy used is the traditional one, where the ocean is driven by the surface stress, heat fluxes, and radiative fluxes computed in the atmospheric component, which in turn receives the SST and surface currents. As expected, the overall skills of the coupled model are slightly degraded compared to the uncoupled models, even though the positioning and timing of the cyclone at the time of the landfall is enhanced. The mean heat fluxes do not change compared to the uncoupled model, whereas the pattern of the shortwave radiation and latent heat is changed. Moreover, the two energy fluxes are larger in absolute values than those calculated with the MFS formulas. The fact that they have opposite signs give raise to a compensation error that limits the overall degradation of the coupled simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.