821 resultados para flexible robotic manipulator
Resumo:
The poster demonstrates the preparatory steps of a digital multi-text edition that are abstracted from the experiences made in the Parzival Project, based at the University of Bern, the Berlin-Brandenburg Academy of Sciences and the University of Erlangen. This edition of Wolfram von Eschenbach’s German Grail novel, written shortly after 1200 and transmitted during several centuries in ca. hundred witnesses, has now been completed by more than a half of the textual corpus. As the text is transmitted in medieval manuscripts the witnesses have to be transcribed according to specific encoding rules. The transcriptions then are collated following certain ideas and concepts of how the transmission process could have developed. The transcriptions and collations finally have to be transferred to a digital edition that allows the users to explore the characteristics of single witnesses as well as the history of a text, which is delivered in variants and in different versions. A dynamically organized database offering various components and adapted to the needs of diverse user-profiles is nowadays the right tool for this purpose.
Resumo:
The poster demonstrates the preparatory steps of a digital multi-text edition that are abstracted from the experiences made in the Parzival Project, based at the University of Bern, the Berlin-Brandenburg Academy of Sciences and the University of Erlangen. This edition of Wolfram von Eschenbach’s German Grail novel, written shortly after 1200 and transmitted during several centuries in ca. hundred witnesses, has now been completed by more than a half of the textual corpus.
Resumo:
The robotic approach in thoracic surgery has rapidly gained popularity in recent years. As with the introduction of any new technology, this warrants not only adaptation of the operative technique itself, but also the evolution of appropriate troubleshooting strategies. A selected number of helpful tips and technical procedural manoeuvres have been compiled to prevent intraoperative problems, as well as to overcome challenging situations that can arise during robotic lobectomies. In robotic surgery, as opposed to open surgery or video-assisted thoracic surgery, these tips serve an important purpose for the operating surgeon, as well as the entire surgical team involved in the procedure. All the assembled recommendations have proved their effectiveness and have been successfully used by the authors in many procedures. Furthermore, these manoeuvres have been found to be of great importance in the training and proctoring of thoracic surgeons, fellows and residents (bed-side assistants). This guide of clearly arranged tips and troubleshooting strategies offers surgeons a useful tool to overcome difficult situations in robotic lobectomy and preferably improve the reproducibility and safety of their procedures.
Resumo:
Many technological developments of the past two decades come with the promise of greater IT flexi-bility, i.e. greater capacity to adapt IT. These technologies are increasingly used to improve organiza-tional routines that are not affected by large, hard-to-change IT such as ERP. Yet, most findings on the interaction of routines and IT stem from contexts where IT is hard to change. Our research ex-plores how routines and IT co-evolve when IT is flexible. We review the literatures on routines to sug-gest that IT may act as a boundary object that mediates the learning process unfolding between the ostensive and the performative aspect of the routine. Although prior work has concluded from such conceptualizations that IT stabilizes routines, we qualify that flexible IT can also stimulate change because it enables learning in short feedback cycles. We suggest that, however, such change might not always materialize because it is contingent on governance choices and technical knowledge. We de-scribe the case-study method to explore how routines and flexible IT co-evolve and how governance and technical knowledge influence this process. We expect to contribute towards stronger theory of routines and to develop recommendations for the effective implementation of flexible IT in loosely coupled routines.
Resumo:
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
Resumo:
HYPOTHESIS A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. BACKGROUND A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1 mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. MATERIALS AND METHODS An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. RESULTS From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1 mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250 μs. Only at low stimulus intensity values (≤0.3 mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5 mm. However, reduction in stimulus threshold to 0.3 mA or lower resulted in a decrease of facial nerve distance detection range below 0.1 mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1 mm) revealed either mild or inexistent damage to the nerve fascicles. CONCLUSION Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.
Resumo:
El trabajo muestra pautas generales de planificación y dirección estratégica, que demuestran cómo es posible planificar y dirigir firmas mendocinas con una mirada estratégica teniendo en cuenta las particularidades del escenario general en donde se desenvuelven.
Resumo:
This paper explains how the Armington-Krugman-Melitz supermodel developed by Dixon and Rimmer can be parameterized, and demonstrates that only two kinds of additional information are required in order to extend a standard trade model to include Melitz-type monopolistic competition and heterogeneous firms. Further, it is shown how specifying too much additional information leads to violations of the model constraints, necessitating adjustment and reconciliation of the data. Once a Melitz-type model is parameterized, a Krugman-type model can also be parameterized using the calibrated values in the Melitz-type model without any additional data. Sample code for the General Algebraic Modeling System (GAMS) has also been prepared to promote the innovative supermodel in the AGE community.