901 resultados para fast protons
Resumo:
We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in $ \O({\rm T}_{\rm feas}(n) \times\log n)$ time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper.
Resumo:
Schraudolph proposed an excellent exponential approximation providing increased performance particularly suited to the logistic squashing function used within many neural networking applications. This note applies Intel's streaming SIMD Extensions 2 (SSE2), where SIMD is single instruction multiple data, of the Pentum IV class processor to Schraudolph's technique, further increasing the performance of the logistic squashing function. It was found that the calculation of the new 32-bit SSE2 logistic squashing function described here was up to 38 times faster than the conventional exponential function and up to 16 times faster than a Schraudolph-style 32-bit method on an Intel Pentum D 3.6 GHz CPU.
Resumo:
Scepticism over stated preference surveys conducted online revolves around the concerns over “professional respondents” who might rush through the questionnaire without sufficiently considering the information provided. To gain insight on the validity of this phenomenon and test the effect of response time on choice randomness, this study makes use of a recently conducted choice experiment survey on ecological and amenity effects of an offshore windfarm in the UK. The positive relationship between self-rated and inferred attribute attendance and response time is taken as evidence for a link between response time and cognitive effort. Subsequently, the generalised multinomial logit model is employed to test the effect of response time on scale, which indicates the weight of the deterministic relative to the error component in the random utility model. Results show that longer response time increases scale, i.e. decreases choice randomness. This positive scale effect of response time is further found to be non-linear and wear off at some point beyond which extreme response time decreases scale. While response time does not systematically affect welfare estimates, higher response time increases the precision of such estimates. These effects persist when self-reported choice certainty is controlled for. Implications of the results for online stated preference surveys and further research are discussed.
Resumo:
Our objective was to study whether “compensatory” models provide better descriptions of clinical judgment than fast and frugal models, according to expertise and experience. Fifty practitioners appraised 60 vignettes describing a child with an exacerbation of asthma and rated their propensities to admit the child. Linear logistic (LL) models of their judgments were compared with a matching heuristic (MH) model that searched available cues in order of importance for a critical value indicating an admission decision. There was a small difference between the 2 models in the proportion of patients allocated correctly (admit or not-admit decisions), 91.2% and 87.8%, respectively. The proportion allocated correctly by the LL model was lower for consultants than juniors, whereas the MH model performed equally well for both. In this vignette study, neither model provided any better description of judgments made by consultants or by pediatricians compared to other grades and specialties.
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.