985 resultados para face classification
Resumo:
Background: Lynch syndrome (LS) is an autosomal dominant inherited cancer syndrome characterized by early onset cancers of the colorectum, endometrium and other tumours. A significant proportion of DNA variants in LS patients are unclassified. Reports on the pathogenicity of the c.1852_1853AA>GC (p.Lys618Ala) variant of the MLH1 gene are conflicting. In this study, we provide new evidence indicating that this variant has no significant implications for LS. Methods: The following approach was used to assess the clinical significance of the p.Lys618Ala variant: frequency in a control population, case-control comparison, co-occurrence of the p.Lys618Ala variant with a pathogenic mutation, co-segregation with the disease and microsatellite instability in tumours from carriers of the variant. We genotyped p.Lys618Ala in 1034 individuals (373 sporadic colorectal cancer [CRC] patients, 250 index subjects from families suspected of having LS [revised Bethesda guidelines] and 411 controls). Three well-characterized LS families that fulfilled the Amsterdam II Criteria and consisted of members with the p.Lys618Ala variant were included to assess co-occurrence and co-segregation. A subset of colorectal tumour DNA samples from 17 patients carrying the p.Lys618Ala variant was screened for microsatellite instability using five mononucleotide markers. Results: Twenty-seven individuals were heterozygous for the p.Lys618Ala variant; nine had sporadic CRC (2.41%), seven were suspected of having hereditary CRC (2.8%) and 11 were controls (2.68%). There were no significant associations in the case-control and case-case studies. The p.Lys618Ala variant was co-existent with pathogenic mutations in two unrelated LS families. In one family, the allele distribution of the pathogenic and unclassified variant was in trans, in the other family the pathogenic variant was detected in the MSH6 gene and only the deleterious variant co-segregated with the disease in both families. Only two positive cases of microsatellite instability (2/17, 11.8%) were detected in tumours from p.Lys618Ala carriers, indicating that this variant does not play a role in functional inactivation of MLH1 in CRC patients. Conclusions: The p.Lys618Ala variant should be considered a neutral variant for LS. These findings have implications for the clinical management of CRC probands and their relatives.
Resumo:
[EN]Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
Humans are able of distinguishing more than 5000 visual categories even in complex environments using a variety of different visual systems all working in tandem. We seem to be capable of distinguishing thousands of different odors as well. In the machine learning community, many commonly used multi-class classifiers do not scale well to such large numbers of categories. This thesis demonstrates a method of automatically creating application-specific taxonomies to aid in scaling classification algorithms to more than 100 cate- gories using both visual and olfactory data. The visual data consists of images collected online and pollen slides scanned under a microscope. The olfactory data was acquired by constructing a small portable sniffing apparatus which draws air over 10 carbon black polymer composite sensors. We investigate performance when classifying 256 visual categories, 8 or more species of pollen and 130 olfactory categories sampled from common household items and a standardized scratch-and-sniff test. Taxonomies are employed in a divide-and-conquer classification framework which improves classification time while allowing the end user to trade performance for specificity as needed. Before classification can even take place, the pollen counter and electronic nose must filter out a high volume of background “clutter” to detect the categories of interest. In the case of pollen this is done with an efficient cascade of classifiers that rule out most non-pollen before invoking slower multi-class classifiers. In the case of the electronic nose, much of the extraneous noise encountered in outdoor environments can be filtered using a sniffing strategy which preferentially samples the visensor response at frequencies that are relatively immune to background contributions from ambient water vapor. This combination of efficient background rejection with scalable classification algorithms is tested in detail for three separate projects: 1) the Caltech-256 Image Dataset, 2) the Caltech Automated Pollen Identification and Counting System (CAPICS) and 3) a portable electronic nose specially constructed for outdoor use.
Resumo:
4 p.
Resumo:
The visual system is a remarkable platform that evolved to solve difficult computational problems such as detection, recognition, and classification of objects. Of great interest is the face-processing network, a sub-system buried deep in the temporal lobe, dedicated for analyzing specific type of objects (faces). In this thesis, I focus on the problem of face detection by the face-processing network. Insights obtained from years of developing computer-vision algorithms to solve this task have suggested that it may be efficiently and effectively solved by detection and integration of local contrast features. Does the brain use a similar strategy? To answer this question, I embark on a journey that takes me through the development and optimization of dedicated tools for targeting and perturbing deep brain structures. Data collected using MR-guided electrophysiology in early face-processing regions was found to have strong selectivity for contrast features, similar to ones used by artificial systems. While individual cells were tuned for only a small subset of features, the population as a whole encoded the full spectrum of features that are predictive to the presence of a face in an image. Together with additional evidence, my results suggest a possible computational mechanism for face detection in early face processing regions. To move from correlation to causation, I focus on adopting an emergent technology for perturbing brain activity using light: optogenetics. While this technique has the potential to overcome problems associated with the de-facto way of brain stimulation (electrical microstimulation), many open questions remain about its applicability and effectiveness for perturbing the non-human primate (NHP) brain. In a set of experiments, I use viral vectors to deliver genetically encoded optogenetic constructs to the frontal eye field and faceselective regions in NHP and examine their effects side-by-side with electrical microstimulation to assess their effectiveness in perturbing neural activity as well as behavior. Results suggest that cells are robustly and strongly modulated upon light delivery and that such perturbation can modulate and even initiate motor behavior, thus, paving the way for future explorations that may apply these tools to study connectivity and information flow in the face processing network.
Resumo:
O objetivo deste trabalho é analisar a situação de exclusão social gerada pela nova ordem político-econômica global, para com as pessoas portadoras de deficiência e, em especial, na Colômbia. A presente análise, mais do que ratificar um estado de exclusão definido pelo estigma social, pretende reinscrever a trajetória desse grupo na dinâmica mais ampla que configura a nova questão social. Busca-se, então, entender o modo pelo qual os circuitos e mecanismos criados pelo Estado liberal, em nome da eficiência econômica, acabaram recriando novas formas de desigualdade e riscos de exclusão que afetam os membros desse grupo. Especial destaque é dado aos debates e controvérsias levantados em torno da dialética exclusão/integração em sua relação com os critérios médicos de avaliação funcional, a natureza do Estado e as políticas públicas. Na especificidade do Estado colombiano, é analisada a ambição e os limites do programa governamental Política de Prevenção e Atenção as Pessoas Portadoras de Deficiência.