897 resultados para estimation and filtering
Resumo:
Desde o seu desenvolvimento na década de 1970 a tomografia computadorizada (TC) passou por grandes mudanças tecnológicas, tornando-se uma importante ferramenta diagnóstica para a medicina. Consequentemente o papel da TC em diagnóstico por imagem expandiu-se rapidamente, principalmente devido a melhorias na qualidade da imagem e tempo de aquisição. A dose de radiação recebida por pacientes devido a tais procedimentos vem ganhando atenção, levando a comunidade científica e os fabricantes a trabalharem juntos em direção a determinação e otimização de doses. Nas últimas décadas muitas metodologias para dosimetria em pacientes têm sido propostas, baseadas especialmente em cálculos utilizando a técnica Monte Carlo ou medições experimentais com objetos simuladores e dosímetros. A possibilidade de medições in vivo também está sendo investigada. Atualmente as principais técnicas para a otimização da dose incluem redução e/ou modulação da corrente anódica. O presente trabalho propõe uma metodologia experimental para estimativa de doses absorvidas pelos pulmões devido a protocolos clínicos de TC, usando um objeto simulador antropomórfico adulto e dosímetros termoluminescentes de Fluoreto de Lítio (LiF). Sete protocolos clínicos diferentes foram selecionados, com base em sua relevância com respeito à otimização de dose e frequência na rotina clínica de dois hospitais de grande porte: Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad) e Instituto do Câncer do Estado de São Paulo Octávio Frias de Oliveira (ICESP). Quatro protocolos de otimização de dose foram analisados: Auto mA, Auto + Smart mA, Baixa Dose (BD) e Ultra Baixa Dose (UBD). Os dois primeiros protocolos supracitados buscam redução de dose por meio de modulação da corrente anódica, enquanto os protocolos BD e UBD propõem a redução do valor da corrente anódica, mantendo-a constante. Os protocolos BD e UBD proporcionaram redução de dose de 72,7(8) % e 91(1) %, respectivamente; 16,8(1,3) % e 35,0(1,2) % de redução de dose foram obtidas com os protocolos Auto mA e Auto + Smart mA, respectivamente. As estimativas de dose para os protocolos analisados neste estudo são compatíveis com estudos similares publicados na literatura, demonstrando a eficiência da metodologia para o cálculo de doses absorvidas no pulmão. Sua aplicabilidade pode ser estendida a diferentes órgãos, diferentes protocolos de CT e diferentes tipos de objetos simuladores antropomórficos (pediátricos, por exemplo). Por fim, a comparação entre os valores de doses estimadas para os pulmões e valores de estimativas de doses dependentes do tamanho (Size Specific Dose Estimates SSDE) demonstrou dependência linear entre as duas grandezas. Resultados de estudos similares exibiram comportamentos similares para doses no reto, sugerindo que doses absorvidas pelos uma órgãos podem ser linearmente dependente dos valores de SSDE, com coeficientes lineares específicos para cada órgão. Uma investigação mais aprofundada sobre doses em órgãos é necessária para avaliar essa hipótese.
Resumo:
Este trabalho apresenta uma análise de algoritmos computacionais aplicados à estimação de fasores elétricos em SEPs. A medição dos fasores é realizada por meio da alocação de Unidades de Medição Fasorial nestes sistemas e encontra diversas aplicações nas áreas de operação, controle, proteção e planejamento. Para que os fasores possam ser aplicados, são definidos padrões de medição, sincronização e comunicação, por meio da norma IEEE C37.118.1. A norma apresenta os padrões de mensagens, timetag, fasores, sistema de sincronização, e define testes para avaliar a estimação. Apesar de abranger todos esses critérios, a diretriz não define um algoritmo de estimação padrão, abrindo espaço para uso de diversos métodos, desde que a precisão seja atendida. Nesse contexto, o presente trabalho analisa alguns algoritmos de estimação de fasores definidos na literatura, avaliando o comportamento deles em determinados casos. Foram considerados, dessa forma, os métodos: Transformada Discreta de Fourier, Método dos Mínimos Quadrados e Transformada Wavelet Discreta, nas versões recursivas e não-recursivas. Esses métodos foram submetidos a sinais sintéticos, a fim de verificar o comportamento diante dos testes propostos pela norma, avaliando o Total Vector Error, tempo de resposta e atraso e overshoot. Os algoritmos também foram embarcados em um hardware, denominado PC104, e avaliados de acordo com os sinais medidos pelo equipamento na saída analógica de um simulador em tempo real (Real Time Digital Simulator).
Resumo:
Com o objetivo de aumentar o lucro de plantas químicas, a Otimização em Tempo Real (RTO) é uma ferramenta que busca determinar as condições ótimas operacionais do processo em estado estacionário, respeitando as restrições operacionais estabelecidas. Neste trabalho foi realizada a implementação prática de um ciclo RTO em um processo de destilação por recompressão de vapor (VRD), propileno-propano, da Refinaria de Paulínia (Petrobras S.A.), a partir de dados históricos da planta. Foram consideradas as principais etapas de um ciclo clássico de RTO: identificação de estado estacionário, reconciliação de dados, estimação de parâmetros e otimização econômica. Essa unidade foi modelada, simulada e otimizada em EMSO (Environment for Modeling, Simulation and Optimization), um simulador de processos orientado a equações desenvolvido no Brasil. Foram analisados e comparados dois métodos de identificação de estado estacionário, um baseado no teste estatístico F e outro baseado em wavelets. Ambos os métodos tiveram resultados semelhantes e mostraram-se capazes de identificar os estados estacionários de forma satisfatória, embora seja necessário o ajuste de parâmetros na sua implementação. Foram identificados alguns pontos estacionários para serem submetidos ao ciclo RTO e foi possível verificar a importância de partir de um estado estacionário para a continuidade do ciclo, já que essa é uma premissa do método. A partir dos pontos analisados, os resultados deste estudo mostram que o RTO é capaz de aumentar o ganho econômico entre 2,5-24%, dependendo das condições iniciais consideradas, o que pode representar ganhos de até 18 milhões de dólares por ano. Além disso, para essa unidade, verificou-se que o compressor é um equipamento limitante no aumento de ganho econômico do processo.
Resumo:
Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.
Resumo:
In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. We present a brain ventricles fast reconstruction method. The method is based on the processing of brain sections and establishing a fixed number of landmarks onto those sections to reconstruct the ventricles 3D surface. Automated landmark extraction is accomplished through the use of the self-organising network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates the classical surface reconstruction and filtering processes. The proposed method offers higher accuracy compared to methods with similar efficiency as Voxel Grid.
Resumo:
We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
Resumo:
Recognition that primary aldosteronism (PAL) is a common specifically treatable form of hypertension and that most patients are normokalemic has led to a marked increase in demand for aldosterone/renin ratio (ARR) testing as a means of screening for this disorder. The value of this screening test depends on an appreciation of many factors (such as diet, posture, time of day, presence of hypokalemia, medications, age, and renal function), which can affect the results, on the care with which these factors are either controlled or their effects taken into account, and on access to reliable and reproducible assays for renin and aldosterone. Even then, physiological day-to-day variability reduces the value of a single estimation, and repeated testing is necessary before a decision that PAL is highly likely (warranting further testing) or highly unlikely can be made. Provided that testing of aldosterone suppressibility is always carried out to confirm or exclude the diagnosis, and the subtype is determined by hybrid gene testing and adrenal venous sampling, wide application of the ARR can have a major beneficial clinical impact with improved therapeutic outcomes, including possible cure in those with unilateral disease.
Resumo:
We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.
Resumo:
The goal of this manuscript is to introduce a framework for consideration of designs for population pharmacokinetic orpharmacokinetic-pharmacodynamic studies. A standard one compartment pharmacokinetic model with first-order input and elimination is considered. A series of theoretical designs are considered that explore the influence of optimizing the allocation of sampling times, allocating patients to elementary designs, consideration of sparse sampling and unbalanced designs and also the influence of single vs. multiple dose designs. It was found that what appears to be relatively sparse sampling (less blood samples per patient than the number of fixed effects parameters to estimate) can also be highly informative. Overall, it is evident that exploring the population design space can yield many parsimonious designs that are efficient for parameter estimation and that may not otherwise have been considered without the aid of optimal design theory.
Resumo:
An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.
Resumo:
La riduzione dei consumi di combustibili fossili e lo sviluppo di tecnologie per il risparmio energetico sono una questione di centrale importanza sia per l’industria che per la ricerca, a causa dei drastici effetti che le emissioni di inquinanti antropogenici stanno avendo sull’ambiente. Mentre un crescente numero di normative e regolamenti vengono emessi per far fronte a questi problemi, la necessità di sviluppare tecnologie a basse emissioni sta guidando la ricerca in numerosi settori industriali. Nonostante la realizzazione di fonti energetiche rinnovabili sia vista come la soluzione più promettente nel lungo periodo, un’efficace e completa integrazione di tali tecnologie risulta ad oggi impraticabile, a causa sia di vincoli tecnici che della vastità della quota di energia prodotta, attualmente soddisfatta da fonti fossili, che le tecnologie alternative dovrebbero andare a coprire. L’ottimizzazione della produzione e della gestione energetica d’altra parte, associata allo sviluppo di tecnologie per la riduzione dei consumi energetici, rappresenta una soluzione adeguata al problema, che può al contempo essere integrata all’interno di orizzonti temporali più brevi. L’obiettivo della presente tesi è quello di investigare, sviluppare ed applicare un insieme di strumenti numerici per ottimizzare la progettazione e la gestione di processi energetici che possa essere usato per ottenere una riduzione dei consumi di combustibile ed un’ottimizzazione dell’efficienza energetica. La metodologia sviluppata si appoggia su un approccio basato sulla modellazione numerica dei sistemi, che sfrutta le capacità predittive, derivanti da una rappresentazione matematica dei processi, per sviluppare delle strategie di ottimizzazione degli stessi, a fronte di condizioni di impiego realistiche. Nello sviluppo di queste procedure, particolare enfasi viene data alla necessità di derivare delle corrette strategie di gestione, che tengano conto delle dinamiche degli impianti analizzati, per poter ottenere le migliori prestazioni durante l’effettiva fase operativa. Durante lo sviluppo della tesi il problema dell’ottimizzazione energetica è stato affrontato in riferimento a tre diverse applicazioni tecnologiche. Nella prima di queste è stato considerato un impianto multi-fonte per la soddisfazione della domanda energetica di un edificio ad uso commerciale. Poiché tale sistema utilizza una serie di molteplici tecnologie per la produzione dell’energia termica ed elettrica richiesta dalle utenze, è necessario identificare la corretta strategia di ripartizione dei carichi, in grado di garantire la massima efficienza energetica dell’impianto. Basandosi su un modello semplificato dell’impianto, il problema è stato risolto applicando un algoritmo di Programmazione Dinamica deterministico, e i risultati ottenuti sono stati comparati con quelli derivanti dall’adozione di una più semplice strategia a regole, provando in tal modo i vantaggi connessi all’adozione di una strategia di controllo ottimale. Nella seconda applicazione è stata investigata la progettazione di una soluzione ibrida per il recupero energetico da uno scavatore idraulico. Poiché diversi layout tecnologici per implementare questa soluzione possono essere concepiti e l’introduzione di componenti aggiuntivi necessita di un corretto dimensionamento, è necessario lo sviluppo di una metodologia che permetta di valutare le massime prestazioni ottenibili da ognuna di tali soluzioni alternative. Il confronto fra i diversi layout è stato perciò condotto sulla base delle prestazioni energetiche del macchinario durante un ciclo di scavo standardizzato, stimate grazie all’ausilio di un dettagliato modello dell’impianto. Poiché l’aggiunta di dispositivi per il recupero energetico introduce gradi di libertà addizionali nel sistema, è stato inoltre necessario determinare la strategia di controllo ottimale dei medesimi, al fine di poter valutare le massime prestazioni ottenibili da ciascun layout. Tale problema è stato di nuovo risolto grazie all’ausilio di un algoritmo di Programmazione Dinamica, che sfrutta un modello semplificato del sistema, ideato per lo scopo. Una volta che le prestazioni ottimali per ogni soluzione progettuale sono state determinate, è stato possibile effettuare un equo confronto fra le diverse alternative. Nella terza ed ultima applicazione è stato analizzato un impianto a ciclo Rankine organico (ORC) per il recupero di cascami termici dai gas di scarico di autovetture. Nonostante gli impianti ORC siano potenzialmente in grado di produrre rilevanti incrementi nel risparmio di combustibile di un veicolo, è necessario per il loro corretto funzionamento lo sviluppo di complesse strategie di controllo, che siano in grado di far fronte alla variabilità della fonte di calore per il processo; inoltre, contemporaneamente alla massimizzazione dei risparmi di combustibile, il sistema deve essere mantenuto in condizioni di funzionamento sicure. Per far fronte al problema, un robusto ed efficace modello dell’impianto è stato realizzato, basandosi sulla Moving Boundary Methodology, per la simulazione delle dinamiche di cambio di fase del fluido organico e la stima delle prestazioni dell’impianto. Tale modello è stato in seguito utilizzato per progettare un controllore predittivo (MPC) in grado di stimare i parametri di controllo ottimali per la gestione del sistema durante il funzionamento transitorio. Per la soluzione del corrispondente problema di ottimizzazione dinamica non lineare, un algoritmo basato sulla Particle Swarm Optimization è stato sviluppato. I risultati ottenuti con l’adozione di tale controllore sono stati confrontati con quelli ottenibili da un classico controllore proporzionale integrale (PI), mostrando nuovamente i vantaggi, da un punto di vista energetico, derivanti dall’adozione di una strategia di controllo ottima.
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
Conventional project management techniques are not always sufficient for ensuring time, cost and quality achievement of large-scale construction projects due to complexity in planning and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation) under-estimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk numagement throughout project life cycle. However, the effectiveness of risk management depends on the technique in which the effects of risk factors are analysed and! or quantified. This study proposes Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique as a tool for risk analysis because it can handle subjective as well as objective factors in decision model that are conflicting in nature. This provides a decision support system (DSS) to project managenumt for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and competitive business environment. The whole methodology is explained through a case study of a cross-country petroleum pipeline project in India and its effectiveness in project1nana.gement is demonstrated.
Resumo:
We report the case of a neologistic jargonaphasic and ask whether her target-related and abstruse neologisms are the result of a single deficit, which affects some items more severely than others, or two deficits: one to lexical access and the other to phonological encoding. We analyse both correct/incorrect performance and errors and apply both traditional and formal methods (maximum-likelihood estimation and model selection). All evidence points to a single deficit at the level of phonological encoding. Further characteristics are used to constrain the locus still further. V.S. does not show the type of length effect expected of a memory component, nor the pattern of errors associated with an articulatory deficit. We conclude that her neologistic errors can result from a single deficit at a level of phonological encoding that immediately follows lexical access where segments are represented in terms of their features. We do not conclude, however, that this is the only possible locus that will produce phonological errors in aphasia, or, indeed, jargonaphasia.