997 resultados para equatorial climate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate projections for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are made using the newly developed representative concentration pathways (RCPs) under the Coupled Model Inter-comparison Project 5 (CMIP5). This article provides multi-model and multi-scenario temperature and precipitation projections for India for the period 1860-2099 based on the new climate data. We find that CMIP5 ensemble mean climate is closer to observed climate than any individual model. The key findings of this study are: (i) under the business-as-usual (between RCP6.0 and RCP8.5) scenario, mean warming in India is likely to be in the range 1.7-2 degrees C by 2030s and 3.3-4.8 degrees C by 2080s relative to pre-industrial times; (ii) all-India precipitation under the business-as-usual scenario is projected to increase from 4% to 5% by 2030s and from 6% to 14% towards the end of the century (2080s) compared to the 1961-1990 baseline; (iii) while precipitation projections are generally less reliable than temperature projections, model agreement in precipitation projections increases from RCP2.6 to RCP8.5, and from short-to long-term projections, indicating that long-term precipitation projections are generally more robust than their short-term counterparts and (iv) there is a consistent positive trend in frequency of extreme precipitation days (e.g. > 40 mm/day) for decades 2060s and beyond. These new climate projections should be used in future assessment of impact of climate change and adaptation planning. There is need to consider not just the mean climate projections, but also the more important extreme projections in impact studies and as well in adaptation planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16A degrees N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to `upper tropospheric warming effect' predominates over the `moisture build-up effect' in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon footprint (CF) refers to the total amount of carbon dioxide and its equivalents emitted due to various anthropogenic activities. Carbon emission and sequestration inventories have been reviewed sector-wise for all federal states in India to identify the sectors and regions responsible for carbon imbalances. This would help in implementing appropriate climate change mitigation and management strategies at disaggregated levels. Major sectors of carbon emissions in India are through electricity generation, transport, domestic energy consumption, industries and agriculture. A majority of carbon storage occurs in forest biomass and soil. This paper focuses on the statewise carbon emissions (CO2. CO and CH4), using region specific emission factors and statewise carbon sequestration capacity. The estimate shows that CO2, CO and CH4 emissions from India are 965.9, 22.5 and 16.9 Tg per year, respectively. Electricity generation contributes 35.5% of total CO2 emission, which is followed by the contribution from transport. Vehicular transport exclusively contributes 25.5% of total emission. The analysis shows that Maharashtra emits higher CO2, followed by Andhra Pradesh, Uttar Pradesh, Gujarat, Tamil Nadu and West Bengal. The carbon status, which is the ratio of annual carbon storage against carbon emission, for each federal state is computed. This shows that small states and union territories (UT) like Arunachal Pradesh, Mizoram and Andaman and Nicobar Islands, where carbon sequestration is higher due to good vegetation cover, have carbon status > 1. Annually, 7.35% of total carbon emissions get stored either in forest biomass or soil, out of which 34% is in Arunachal Pradesh, Madhya Pradesh, Chhattisgarh and Orissa. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The El Nino/Southern Oscillation phenomenon, characterized by anomalous sea surface temperatures and winds in the tropical Pacific, affects climate across the globe(1). El Ninos occur every 2-7 years, whereas the El Nino/Southern Oscillation itself varies on decadal timescales in frequency and amplitude, with a different spatial pattern of surface anomalies(2) each time the tropical Pacific undergoes a regime shift. Recent work has shown that Bjerknes feedback(3,4) (coupling of the atmosphere and the ocean through changes in equatorial winds driven by changes in sea surface temperature owing to suppression of equatorial upwelling in the east Pacific) is not necessary(5) for the development of an El Nino. Thus it is unclear what remains constant through regimes and is crucial for producing the anomalies recognized as El Nino. Here we show that the subsurface process of discharging warm waters always begins in the boreal summer/autumn of the year before the event (up to 18 months before the peak) independent of regimes, identifying the discharge process as fundamental to the El Nino onset. It is therefore imperative that models capture this process accurately to further our theoretical understanding, improve forecasts and predict how the El Nino/Southern Oscillation may respond to climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper critically evaluates the vulnerability of Indian cities to climate change in the context of sustainable development. City-scale indicators are developed for multiple dimensions of security and vulnerability. Factor analysis is employed to construct a vulnerability ranking of 46 major Indian cities. The analysis reveals that high aggregate levels of wealth do not necessarily make a city less vulnerable. Two, cities with diversified economic opportunities could adapt better to the new risks posed by climate change, than cities with unipolar opportunities. Three, highly polluted cities are more vulnerable to the health impacts of climate change, and cities with severe groundwater depletion will find it difficult to cope with increased rainfall variability. Policy and sustainability issues are discussed for these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain parts of the State of Nagaland situated in the northeastern region of India have been experiencing rainfall deficit over the past few years leading to severe drought-like conditions, which is likely to be aggravated under a climate change scenario. The state has already incurred considerable losses in the agricultural sector. Regional vulnerability assessments need to be carried out in order to help policy makers and planners formulate and implement effective drought management strategies. The present study uses an 'index-based approach' to quantify the climate variability-induced vulnerability of farmers in five villages of Dimapur district, Nagaland. Indicators, which are reflective of the exposure, sensitivity and adaptive capacity of the farmers to drought, were quantified on the basis of primary data generated through household surveys and participatory rural appraisal supplemented by secondary data in order to calculate a composite vulnerability index. The composite vulnerability index of village New Showba was found to be the least, while Zutovi, the highest. The overall results reveal that biophysical characteristics contribute the most to overall vulnerability. Some potential adaptation strategies were also identified based on observations and discussions with the villagers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the TungaBhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC-HMS 3.4) is used for the hydrological modelling of the study area. Linear-regression-based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub-basins of the study area. The large-scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 20112040, 20412070, and 20712099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub-basins in the study area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations and models have shown the presence of intraseasonal fluctuations in 20-30-day and 10-20-day bands in the equatorial Indian Ocean west of 60 degrees E (WEIO). Their spatial and temporal structures characterize them as Yanai waves, which we label low-frequency (LFYW) and high-frequency (HFYW) Yanai waves, respectively. We explore the dynamics of these intraseasonal signals, using an ocean general circulation model (Modular Ocean Model) and a linear, continuously stratified model. Yanai waves are forced by the meridional wind tau(y) everywhere in the WEIO most strongly during the monsoon seasons. They are forced both directly in the interior ocean and by reflection of the interior response from the western boundary; interference between the interior and boundary responses results in a complex surface pattern that propagates eastward and has nodes. Yanai waves are also forced by instabilities primarily during June/July in a region offshore from the western boundary (52-55 degrees E). At that time, eddies, generated by barotropic instability of the Southern Gyre, are advected southward to the equator. There, they generate a westward-propagating, cross-equatorial flow field, v(eq), with a wave number/frequency spectrum that fits the dispersion relation of a number of Yanai waves, and these waves are efficiently excited. Typically, Yanai waves associated with several baroclinic modes are excited by both wind and eddy forcing; and typically, they superpose to create beams that carry energy vertically and eastward along ray paths. The same processes generate LFYWs and HFYWs, and hence, their responses are similar; differences are traceable to the property that HFYWs have longer wavelengths than LFYWs for each baroclinic mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water is the most important medium through which climate change influences human life. Rising temperatures together with regional changes in precipitation patterns are some of the impacts of climate change that have implications on water availability, frequency and intensity of floods and droughts, soil moisture, water quality, water supply and water demands for irrigation and hydropower generation. In this article we provide an introduction to the emerging field of hydrologic impacts of climate change with a focus on water availability, water quality and irrigation demands. Climate change estimates on regional or local spatial scales are burdened with a considerable amount of uncertainty, stemming from various sources such as climate models, downscaling and hydrological models used in the impact assessments and uncertainty in the downscaling relationships. The present article summarizes the recent advances on uncertainty modeling and regional impacts of climate change for the Mahanadi and Tunga-Bhadra Rivers in India.