974 resultados para epididymis tail


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract—Burst-and-coast is the most common locomotion type in freely routine swimming of koi carps (Cyprinus carpio koi), which consists of a burst phase and a coast phase in each cycle and mostly leads to a straight-line trajectory. Combining with the tracking experiment, the flow physics of koi carp’s burst-andcoast swimming is investigated using a novel integrated CFD method solving the body-fluid interaction problem. The dynamical equations of a deforming body are formulated. Following that, the loose-coupled equations of the body dynamics and the fluid dynamics are numerically solved with the integrated method. The two burst modes, MT (Multiple Tail-beat) and HT (Half Tail-beat), which have been reported by the experiments, are investigated by numerical simulations in this paper. The body kinematics is predicted and the flow physics is visualized, which are in good agreement with the corresponding experiments. Furthermore, the optimization on the energy cost and several critical control mechanisms in burst-and-coast swimming of koi carps are explored, by varying the parameters in its selfpropelled swimming. In this paper, energetics is measured by the two mechanical quantities, total output power CP and Froude efficiency Fr. Results and discussion show that from the standpoint of mechanical energy, burst-and-coast swimming does not actually save energy comparing with steady swimming at the same average speed, in that frequently changing of speed leads to decrease of efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

North Sea plaice (Pleuronectes platessa) and dab (Limanda limanda) were experimentally stored in ice for 6 days during the 181th cruise of the FRV “Wather Herwig III”. It could be demonstrated that both flat fish species showed the same storage properties and were of a comparable quality until the end of the storage experiment. The quality of both species was determined by sensory assessment of the quality grade, by measuring of the impedance using the German Fischtester VI and the Icelandic RT- tester and pH- and TVB- N- measurements. The average length of North Sea dab is generally small (female: 18,5 ± 3,9 cm; male: 17 ± 2,9 cm), therefore it seemed to be more efficient to process fish portions (eviscerated, head, tail, fins and part of belly flaps removed). The yield by manually processed filets or fish portions from dab is about 30 or 62 %, respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on development of H. longifilis (Curvier and Valenciennes, 1840) were conducted at a temperature of 25EC ( 1Ec) in aquaria tanks continuous development were monitored with the use of wild Heerbrugy photomacroscope and length of yolk and larva were monitored using Stereo Olympus microscope with ocular micrometer. The division into animal and vegetal poles was observed 22 minutes after activation. The first cleavage occurred 65 minutes after activation while the second division which was perpendicular to the first line of division occurred 74 minutes after activation. This was quickly followed by the third and fourth cleavage at 80th and 82nd minutes after activation respectively. Morular stage was reached at 4 hours 20 minutes with formation of optic bud at 14 hours 35 minutes. (DBO) Developing embryo hatched after 27 hours of activation at a mean length of 6.63 and mean yolk length of 2.17. Yolk size decrease at an average rate of 38.5 % till the 5th day of total absorption. Growth of larvae proceeded faster in tail-anus region than in anus-snout portion of the body. The rate of yolk absorption and larva development (survival) as monitored in this work gives important information in Research and development programme for H. longifilis larva - an important aspect of Research development and implementation of appropriate technologies in small scale fisheries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of cell-cell interactions in the nervous system are mediated by immunoglobulin gene superfamily members. For example, neuroglian, a homophilic neural cell adhesion molecule in Drosophila, has an extracellular portion comprising six C- 2 type immunoglobulin-like domains followed by five fibronectin type III (FnIII) repeats. Neuroglian shares this domain organization and significant sequence identity with Ll, a murine neural adhesion molecule that could be a functional homologue. Here I report the crystal structure of a proteolytic fragment containing the first two FnIII repeats of neuroglian (NgFn 1,2) at 2.0Å. The interpretation of photomicrographs of rotary shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five neuroglian Fn III domains, is also discussed.

The structure of NgFn 1,2 consists of two roughly cylindrical β-barrel structural motifs arranged in a head-to-tail fashion with the domains meeting at an angle of ~120, as defined by the cylinder axes. The folding topology of each domain is identical to that previously observed for single FnIII domains from tenascin and fibronectin. The domains of NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the longest dimension of the fragment. Assuming this relative orientation is a general property of tandem FnIII repeats, the multiple tandem FnIII domains in neuroglian and other proteins are modeled as thin straight rods with two domain zig-zag repeats. When combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 Å in diameter) that extends up to 370Å from the cell surface.

In photomicrographs, rotary shadowed Ng and NgFn1-5 appear to be highly flexible rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean total length consistent with models generated from the NgFn1,2 structure. Ng molecules have up to four bends and a mean total length of 392 Å, consistent with a head-to-tail packing of neuroglian's C2-type domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Herein I discuss the interaction of Wnt and FGF signaling in controlling vulval cell lineage polarity with emphasis on the posterior-most cell that forms the vulva, P7.p.

The mirror symmetry of the C. elegans vulva is achieved by the opposite division orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. Opposing Wnt signals control the division patterns of the VPCs by controlling the localization of SYS-1/ β-catenin toward the direction of the Wnt gradient. Multiple Wnt signals, expressed at the axis of symmetry, promote the wild-type, anterior-facing, P7.p orientation, whereas Wnts EGL-20 and CWN-1 from the tail and posterior body wall muscle, respectively, promote the daughter cells of P7.p to face the posterior. EGL-20 acts through a member of the LDL receptor superfamily, LRP-2, along with Ror/CAM-1 and Van Gogh/VANG-1. All three transmembrane proteins control orientation through the localization of the SYS-1.

The Fibroblast Growth Factor (FGF) pathway acts in concert with LIN-17/Frizzled to regulate the localization of SYS-1. The source of the FGF ligand is the 1° VPC, P6.p, which controls the polarity of the neighboring 2° VPC, P7.p, by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt, cwn-1, is expressed in the posterior body wall muscle of the worm as well as the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the Wnt gradient. The FGF pathway leads to the regulation of cwn-1 transcripts in the SMs. These results illustrate the first evidence of the interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity as well as highlight the promiscuous nature of Wnt signaling within C. elegans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The access of 1.2-40 MeV protons and 0.4-1.0 MeV electrons from interplanetary space to the polar cap regions has been investigated with an experiment on board a low altitude, polar orbiting satellite (OG0-4).

A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines which is an order of magnitude more comprehensive than previously available.

Persistent features (north/south asymmetries) in the polar cap proton flux, which are established as normal during solar proton events, are shown to be associated with different flux levels on open geomagnetic field lines than on closed field lines. The pole in which these persistent features are observed is strongly correlated to the sector structure of the interplanetary magnetic field and uncorrelated to the north/south component of this field. The features were observed in the north (south) pole during a negative (positive) sector 91% of the time, while the solar field had a southward component only 54% of the time. In addition, changes in the north/south component have no observable effect on the persistent features.

Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space are used to establish the characteristics of the 1.2 - 40 MeV proton access windows: the access window for low polar latitudes is near the earth, that for one high polar latitude region is ~250 R behind the earth, while that for the other high polar latitude region is ~1750 R behind the earth. All of the access windows are of approximately the same extent (~120 R). The following phenomena contribute to persistent polar cap features: limited interplanetary regions of enhanced flux propagating past the earth, radial gradients in the interplanetary flux, and anisotropies in the interplanetary flux.

These results are compared to the particle access predictions of the distant geomagnetic tail configurations proposed by Michel and Dessler, Dungey, and Frank. The data are consistent with neither the model of Michel and Dessler nor that of Dungey. The model of Frank can yield a consistent access window configuration provided the following constraints are satisfied: the merging rate for open field lines at one polar neutral point must be ~5 times that at the other polar neutral point, related to the solar magnetic field configuration in a consistent fashion, the migration time for open field lines to move across the polar cap region must be the same in both poles, and the open field line merging rate at one of the polar neutral points must be at least as large as that required for almost all the open field lines to have merged in 0 (one hour). The possibility of satisfying these constraints is investigated in some detail.

The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of non-adiabatic particle entry through regions where the magnetic field is changing direction. The degree to which such particle entry can be assumed to be nearly adiabatic is related to the particle rigidity, the angle through which the field turns, and the rate at which the field changes direction; this relationship is established for the case of polar cap observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted on the adsorption of Escherichia coli bacteriophage T4 to activated carbon. Preliminary adsorption experiments were also made with poliovirus Type III. The effectiveness of such adsorbents as diatomaceous earth, Ottawa sand, and coconut charcoal was also tested for virus adsorption.

The kinetics of adsorption were studied in an agitated solution containing virus and carbon. The mechanism of attachment and site characteristics were investigated by varying pH and ionic strength and using site-blocking reagents.

Plaque assay procedures were developed for bacteriophage T4 on Escherichia coli cells and poliovirus Type III on monkey kidney cells. Factors influencing the efficiency of plaque formation were investigated.

The kinetics of bacteriophage T4 adsorption to activated carbon can be described by a reversible second-order equation. The reaction order was first order with respect to both virus and carbon concentration. This kinetic representation, however, is probably incorrect at optimum adsorption conditions, which occurred at a pH of 7.0 and ionic strength of 0.08. At optimum conditions the adsorption rate was satisfactorily described by a diffusion-limited process. Interpretation of adsorption data by a development of the diffusion equation for Langmuir adsorption yielded a diffusion coefficient of 12 X 10-8 cm2/sec for bacteriophage T4. This diffusion coefficient is in excellent agreement with the accepted value of 8 X 10-8 cm2/sec. A diffusion-limited theory may also represent adsorption at conditions other than the maximal. A clear conclusion on the limiting process cannot be made.

Adsorption of bacteriophage T4 to activated carbon obeys the Langmuir isotherm and is thermodynamically reversible. Thus virus is not inactivated by adsorption. Adsorption is unimolecular with very inefficient use of the available carbon surface area. The virus is probably completely excluded from pores due to its size.

Adsorption is of a physical nature and independent of temperature. Attraction is due to electrostatic forces between the virus and carbon. Effects of pH and ionic strength indicated that carboxyl groups, amino groups, and the virus's tail fibers are involved in the attachment of virus to carbon. The active sites on activated carbon for adsorption of bacteriophage T4 are carboxyl groups. Adsorption can be completely blocked by esterifying these groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I

Chapter 1.....A physicochemical study of the DNA molecules from the three bacteriophages, N1, N5, and N6, which infect the bacterium, M. lysodeikticus, has been made. The molecular weights, as measured by both electron microscopy and sedimentation velocity, are 23 x 106 for N5 DNA and 31 x 106 for N1 and N6 DNA's. All three DNA's are capable of thermally reversible cyclization. N1 and N6 DNA's have identical or very similar base sequences as judged by membrane filter hybridization and by electron microscope heteroduplex studies. They have identical or similar cohesive ends. These results are in accord with the close biological relation between N1 and N6 phages. N5 DNA is not closely related to N1 or N6 DNA. The denaturation Tm of all three DNA's is the same and corresponds to a (GC) content of 70%. However, the buoyant densities in CsCl of Nl and N6 DNA's are lower than expected, corresponding to predicted GC contents of 64 and 67%. The buoyant densities in Cs2SO4 are also somewhat anomalous. The buoyant density anomalies are probably due to the presence of odd bases. However, direct base composition analysis of N1 DNA by anion exchange chromatography confirms a GC content of 70%, and, in the elution system used, no peaks due to odd bases are present.

Chapter 2.....A covalently closed circular DNA form has been observed as an intracellular form during both productive and abortive infection processes in M. lysodeikticus. This species has been isolated by the method of CsC1-ethidium bromide centrifugation and examined with an electron microscope.

Chapter 3.....A minute circular DNA has been discovered as a homogeneous population in M. lysodeikticus. Its length and molecular weight as determined by electron microscopy are 0.445 μ and 0.88 x 106 daltons respectively. There is about one minicircle per bacterium.

Chapter 4.....Several strains of E. coli 15 harbor a prophage. Viral growth can be induced by exposing the host to mitomycin C or to uv irradiation. The coliphage 15 particles from E. coli 15 and E, coli 15 T- appear as normal phage with head and tail structure; the particles from E. coli 15 TAU are tailless. The complete particles exert a colicinogenic activity on E.coli 15 and 15 T-, the tailless particles do not. No host for a productive viral infection has been found and the phage may be defective. The properties of the DNA of the virus have been studied, mainly by electron microscopy. After induction but before lysis, a closed circular DNA with a contour length of about 11.9 μ is found in the bacterium; the mature phage DNA is a linear duplex and 7.5% longer than the intracellular circular form. This suggests the hypothesis that the mature phage DNA is terminally repetitious and circularly permuted. The hypothesis was confirmed by observing that denaturation and renaturation of the mature phage DNA produce circular duplexes with two single-stranded branches corresponding to the terminal repetition. The contour length of the mature phage DNA was measured relative to φX RFII DNA and λ DNA; the calculated molecular weight is 27 x 106. The length of the single-stranded terminal repetition was compared to the length of φX 174 DNA under conditions where single-stranded DNA is seen in an extended form in electron micrographs. The length of the terminal repetition is found to be 7.4% of the length of the nonrepetitious part of the coliphage 15 DNA. The number of base pairs in the terminal repetition is variable in different molecules, with a fractional standard deviation of 0.18 of the average number in the terminal repetition. A new phenomenon termed "branch migration" has been discovered in renatured circular molecules; it results in forked branches, with two emerging single strands, at the position of the terminal repetition. The distribution of branch separations between the two terminal repetitions in the population of renatured circular molecules was studied. The observed distribution suggests that there is an excluded volume effect in the renaturation of a population of circularly permuted molecules such that strands with close beginning points preferentially renature with each other. This selective renaturation and the phenomenon of branch migration both affect the distribution of branch separations; the observed distribution does not contradict the hypothesis of a random distribution of beginning points around the chromosome.

Chapter 5....Some physicochemical studies on the minicircular DNA species in E. coli 15 (0.670 μ, 1.47 x 106 daltons) have been made. Electron microscopic observations showed multimeric forms of the minicircle which amount to 5% of total DNA species and also showed presumably replicating forms of the minicircle. A renaturation kinetic study showed that the minicircle is a unique DNA species in its size and base sequence. A study on the minicircle replication has been made under condition in which host DNA synthesis is synchronized. Despite experimental uncertainties involved, it seems that the minicircle replication is random and the number of the minicircles increases continuously throughout a generation of the host, regardless of host DNA synchronization.

Part II

The flow dichroism of dilute DNA solutions (A260≈0.1) has been studied in a Couette-type apparatus with the outer cylinder rotating and with the light path parallel to the cylinder axis. Shear gradients in the range of 5-160 sec.-1 were studied. The DNA samples were whole, "half," and "quarter" molecules of T4 bacteriophage DNA, and linear and circular λb2b5c DNA. For the linear molecules, the fractional flow dichroism is a linear function of molecular weight. The dichroism for linear A DNA is about 1.8 that of the circular molecule. For a given DNA, the dichroism is an approximately linear function of shear gradient, but with a slight upward curvature at low values of G, and some trend toward saturation at larger values of G. The fractional dichroism increases as the supporting electrolyte concentration decreases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetyltransferases and deacetylases catalyze the addition and removal, respectively, of acetyl groups to the epsilon-amino group of protein lysine residues. This modification can affect the function of a protein through several means, including the recruitment of specific binding partners called acetyl-lysine readers. Acetyltransferases, deacetylases, and acetyl-lysine readers have emerged as crucial regulators of biological processes and prominent targets for the treatment of human disease. This work describes a combination of structural, biochemical, biophysical, cell-biological, and organismal studies undertaken on a set of proteins that cumulatively include all steps of the acetylation process: the acetyltransferase MEC-17, the deacetylase SIRT1, and the acetyl-lysine reader DPF2. Tubulin acetylation by MEC-17 is associated with stable, long-lived microtubule structures. We determined the crystal structure of the catalytic domain of human MEC-17 in complex with the cofactor acetyl-CoA. The structure in combination with an extensive enzymatic analysis of MEC-17 mutants identified residues for cofactor and substrate recognition and activity. A large, evolutionarily conserved hydrophobic surface patch distal to the active site was shown to be necessary for catalysis, suggesting that specificity is achieved by interactions with the alpha-tubulin substrate that extend outside of the modified surface loop. Experiments in C. elegans showed that while MEC-17 is required for touch sensitivity, MEC-17 enzymatic activity is dispensible for this behavior. SIRT1 deacetylates a wide range of substrates, including p53, NF-kappaB, FOXO transcription factors, and PGC-1-alpha, with roles in cellular processes ranging from energy metabolism to cell survival. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an apo form and in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a beta-hairpin structure that complements the beta-sheet of the NAD^+-binding domain, covering an essentially invariant, hydrophobic surface. A comparison of the apo and cofactor bound structures revealed conformational changes throughout catalysis, including a rotation of a smaller subdomain with respect to the larger NAD^+-binding subdomain. A biochemical analysis identified key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. DPF2 represses myeloid differentiation in acute myelogenous leukemia. Finally, we solved the crystal structure of the tandem PHD domain of human DPF2. We showed that DPF2 preferentially binds H3 tail peptides acetylated at Lys14, and binds H4 tail peptides with no preference for acetylation state. Through a structural and mutational analysis we identify the molecular basis of histone recognition. We propose a model for the role of DPF2 in AML and identify the DPF2 tandem PHD finger domain as a promising novel target for anti-leukemia therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bacteriophage (TØ3) which infects the thermophilic bacterium Bacillus stearothermophilus ATCC 8005 was isolated and characterized. Infection of the bacterium by the bacteriophage was carried out at 60°C, the optimum growth temperature of the host. At 60°C the phage has a latent period of 18 minutes and a burst size of about 200. The phage is comparatively thermostable in broth. The half life of the phage is 400 minutes at 60°C, 120 minutes at 65°C, 40 minutes at 70°C and 12 minutes at 75°C. The activation energy for the heat inactivation of TØ3 is 56,000 cal. The buoyant density of TØ3 in a cesium chloride density gradient is 1.526.

Electron micrographs of TØ3 indicate that the phage has a regular hexagonal shaped head 57 mμ long. The morphology of the head is compatible with icosahedral symmetry. Each edge of the head is 29 mμ long, and there are 6 or 7 subunits along each edge. The tail of TØ3 is 125 mμ long and 10 mμ wide. There are about 30 cross striations that are spaced at 3.9 mμ intervals along the tail.

The DNA of phage TØ3 has a melting temperature of 88.5°C. Heat denatured TØ3 DNA can be extensively annealed in a high ionic strength environment. The buoyant density of TØ3 DNA in a cesium chloride density gradient is 1.695. TØ3 DNA contains: 42.7% guanine plus cytosine, as determined from the melting temperature; 43% guanine plus cytosine, as determined from the buoyant density; and 40.2% guanine plus cytosine, as determined by chromatographic separation and spectrophotometric estimation of the bases. The molecular weight of TØ3 DNA is 16.7 X 106 as determined from the band width of the TØ3 DNA concentration distribution in a cesium chloride density gradient. Electron microscopy of TØ3 DNA revealed a single linear molecule that is 11.7 μ long. This corresponds to a molecular weight of 22.5 X 106.

Heat denatured TØ3 DNA forms two bands in a cesium chloride density gradient, one at a density of 1.707 and the other at a density of 1.715. After the separated bands are mixed and annealed in the centrifuge cell, the renatured TØ3 DNA forms a single band at a density of 1.699. These results indicate that the two complementary strands of TØ3 DNA have different buoyant densities in cesium chloride, presumably because they have different base compositions.

The characteristics of TØ3 are compared with those of other phages. A hypothesis is presented for a relationship between the base composition of one strand of TØ3 DNA and the amino acid composition of the proteins of TØ3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I. The regions of sequence homology and non-homology between the DNA molecules of T2, T4, and T6 have been mapped by the electron microscopic heteroduplex method. The heteroduplex maps have been oriented with respect to the T4 genetic map. They show characteristic, reproducible patterns of substitution and deletion loops. All heteroduplex molecules show more than 85% homology. Some of the loop patterns in T2/T4 heteroduplexes are similar to those in T4/T6.

We find that the rII, the lysozyme and ac genes, the D region, and gene 52 are homologous in T2, T4, and T6. Genes 43 and 47 are probably homologous between T2 and T4. The region of greatest homology is that bearing the late genes. The host range region, which comprises a part of gene 37 and all of gene 38, is heterologous in T2, T4, and T6. The remainder of gene 37 is partially homologous in the T2/T4 heteroduplex (Beckendorf, Kim and Lielausis, 1972) but it is heterologous in T4/T6 and in T2/T6. Some of the tRNA genes are homologous and some are not. The internal protein genes in general seem to be non-homologous.

The molecular lengths of the T-even DNAs are the same within the limit of experimental error; their calculated molecular weights are correspondingly different due to unequal glucosylation. The size of the T2 genome is smaller than that of T4 or T6, but the terminally repetitious region in T2 is larger. There is a length distribution of the terminal repetition for any one phage DNA, indicating a variability in length of the DNA molecules packaged within the phage.

Part II. E. coli cells infected with phage strains carrying extensive deletions encompassing the gene for the phage ser-tRNA are missing the phage tRNAs normally present in wild type infected cells. By DNA-RNA hybridization we have demonstrated that the DNA complementary to the missing tRNAs is also absent in such deletion mutants. Thus the genes for these tRNAs must be clustered in the same region of the genome as the ser-tRNA gene. Physical mapping of several deletions of the ser-tRNA and lysozyme genes, by examination of heteroduplex DNA in the electron microscope, has enabled us to locate the cluster, to define its maximum size, and to order a few of the tRNA genes within it. That such deletions can be isolated indicates that the phage-specific tRNAs from this cluster are dispensable.

Part III. Genes 37 and 38 between closely related phages T2 and T4 have been compared by genetic, biochemical, and hetero-duplex studies. Homologous, partially homologous and non-homologous regions of the gene 37 have been mapped. The host range determinant which interacts with the gene 38 product is identified.

Part IV. A population of double-stranded ØX-RF DNA molecules carrying a deletion of about 9% of the wild-type DNA has been discovered in a sample cultivated under conditions where the phage lysozyme gene is nonessential. The structures of deleted monomers, dimers, and trimers have been studied by the electron microscope heteroduplex method. The dimers and trimers are shown to be head-to-tail repeats of the deleted monomers. Some interesting examples of the dynamical phenomenon of branch migration in vitro have been observed in heteroduplexes of deleted dimer and trimer strands with undeleted wild-type monomer viral strands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A forma e o tamanho de um determinado organismo devem caracterizar aspectos ecológicos, uma vez que a morfometria é resultado da evolução. Diferenças nos caracteres morfológicos podem ter sido causadas por isolamento geográfico, mesmo em períodos de tempo relativamente curtos. O estudo da morfologia ecológica é uma tentativa de compreender a relação funcional entre variação morfológica e a ecologia dos animais. A variação nos atributos morfométricos de tamanho corpóreo entre os sexos pode ser um resultado da ação da seleção sexual. O presente estudo aborda uma comparação intrasexual e entre área continental e insular da morfologia de Conopophaga melanops (Vieillot, 1818), tendo sido realizado em uma área na Ilha Grande e em outra área na Reserva Ecológica Rio das Pedras (ReRP), RJ. A espécie, endêmica de Mata Atlântica e estritamente florestal, apresenta dimorfismo sexual, contudo indivíduos jovens possuem plumagem similar a de fêmeas. As aves foram capturadas com redes neblina, e doze medidas morfométricas foram obtidas de 51 indivíduos. A confirmação do sexo foi realizada por métodos moleculares baseados no DNA em 69 amostras. O percentual de erro na identificação do sexo em campo, pela plumagem, foi de 9,7%. A confirmação molecular do sexo é uma importante ferramenta que têm potencial de revelar padrões demográficos em estudos comportamentais e reprodutivos desta espécie. Na ReRP o comprimento da asa e a variável distância da cabeça até a ponta do bico apresentaram uma diferença significativa, sendo maior para machos do que para fêmeas. Já na Ilha Grande, as únicas variáveis que apresentaram diferença significativa foram comprimento da cauda (maior em machos) e altura do bico na base (maior em fêmeas). As diferenças de tamanho da asa entre os sexos corroboram com padrões de diversas outras espécies Neotropicais. A diferença morfométrica do bico pode estar associada à ecologia alimentar desta espécie. Tanto fêmeas quanto machos foram maiores na ilha do que no continente com relação ao comprimento total e comprimento da asa, além de comprimento da cauda maior para os machos.