981 resultados para environmental controls
Resumo:
In recent events, notions of political protest, civil disobedience, extremism, and criminal action have become increasingly blurred. The London Riots, the Occupy movement, and the actions of hacking group Anonymous have all sparked heated debate about the limits of legitimate protest, and the distinction between an acceptable action and a criminal offence. Long before these events, environmental activists were challenging convention in protest actions, with several groups engaging in politically motivated law-breaking. The emergence of the term ‘eco-tage’ (the sabotage of equipment in order to protect the environment) signifies the important place environmental activists hold in challenging the traditional boundaries between illegal action and legitimate protest. Many of these groups establish their own boundaries of legitimacy, with some justifying their actions on the basis of civil disobedience or extensional self-defence. This paper examines the statements of environmental activist organisations that have engaged in politically motivated law breaking. It identifies the parameters that these groups set on their illegal actions, as well as the justifications that they provide, with a view to determining where these actions fit in the vast grey area between legal protest and violent extremism.
Resumo:
Background Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. Methods The present association study tested whether length variations in the second (more 3') polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO). In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. Results Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090). Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05). The prevalence of the long CAG repeat (>19 repeats) did not reach statistical significance in migraineurs (P = 0.15), nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively), or between MA vs MO (P = 0.40). Conclusion This association study provides no evidence that length variations of the second polyglutamine array in the N-terminus of the KCNN3 channel exert an effect in the pathogenesis of migraine.
Resumo:
The overall aim of our research was to characterize airborne particles from selected nanotechnology processes and to utilize the data to develop and test quantitative particle concentration-based criteria that can be used to trigger an assessment of particle emission controls. We investigated particle number concentration (PNC), particle mass (PM) concentration, count median diameter (CMD), alveolar deposited surface area, elemental composition, and morphology from sampling of aerosols arising from six nanotechnology processes. These included fibrous and non-fibrous particles, including carbon nanotubes (CNTs). We adopted standard occupational hygiene principles in relation to controlling peak emission and exposures, as outlined by both Safe Work Australia, (1) and the American Conference of Governmental Industrial Hygienists (ACGIH®). (2) The results from the study were used to analyses peak and 30-minute averaged particle number and mass concentration values measured during the operation of the nanotechnology processes. Analysis of peak (highest value recorded) and 30-minute averaged particle number and mass concentration values revealed: Peak PNC20–1000 nm emitted from the nanotechnology processes were up to three orders of magnitude greater than the local background particle concentration (LBPC). Peak PNC300–3000 nm was up to an order of magnitude greater, and PM2.5 concentrations up to four orders of magnitude greater. For three of these nanotechnology processes, the 30-minute average particle number and mass concentrations were also significantly different from the LBPC (p-value < 0.001). We propose emission or exposure controls may need to be implemented or modified, or further assessment of the controls be undertaken, if concentrations exceed three times the LBPC, which is also used as the local particle reference value, for more than a total of 30 minutes during a workday, and/or if a single short-term measurement exceeds five times the local particle reference value. The use of these quantitative criteria, which we are terming the universal excursion guidance criteria, will account for the typical variation in LBPC and inaccuracy of instruments, while precautionary enough to highlight peaks in particle concentration likely to be associated with particle emission from the nanotechnology process. Recommendations on when to utilize local excursion guidance criteria are also provided.
Resumo:
This paper examines ‘green’ entrepreneurial nascent and young firms in Australia. Findings of interest in this paper include: • Green entrepreneurs are more likely to be highly educated and have an extended depth of experience within their industry and are more likely to have started a business prior to their current venture. • Green entrepreneurs exhibit increased levels of innovation, with an increased focus on new & high technology, R&D and the development of proprietary technology. • Green entrepreneurs are most likely to be based upon a product rather than a service and have a higher emphasis upon growth when compared with non-green entrepreneurs. • Green entrepreneurial firms tend to have a longer venture creation process and draw financial resources from a larger number of sources and rely more upon equity as a means of financing their venture.
Resumo:
Rural communities across Australia are increasingly being asked to shoulder the environmental and social impacts of intensive mining and gas projects. Escalating demand for coal seam gas (CSG) is raising significant environmental justice issues for rural communities. Chief amongst environmental concerns are risks of contamination or depletion of vital underground aquifers as well as treatment and disposal of high-saline water close to high quality agricultural soils. Associated infrastructure such as pipelines, electricity lines, gas processing and port facilities can also adversely affect communities and ecosystems great distances from where the gas is originally extracted. Whilst community submission (and appeal) rights do exist, accessing expert independent information is challenging, legal terminology is complex and submission periods are short, leading ultimately to a lack of procedural justice for landholders and their communities. Since August 2012, Queensland University of Technology (QUT) has worked in partnership with not-for-profit legal centre - Queensland’s Environmental Defenders Office (EDO) - to help better educate communities about mining and CSG assessment processes. The project, now entering its third semester, aims to empower communities to access relevant information and actively engage in legal processes on their own behalf. Students involved in the project so far have helped to research chapters of a comprehensive community guide to mining and CSG law as well as organising multidisciplinary community forums and preparing information on land access and compensation rights for landholders. While environmental justice issues still exist without significant law reform, the project has led to greater awareness amongst the community of the laws relating the CSG. At the same time, it has led to a greater understanding by students and academics of real life environmental justice issues currently faced by rural communities.
Resumo:
Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.
Resumo:
Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data. Read More: http://www.esajournals.org/doi/abs/10.1890/12-2088.1
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
A novel method was developed for studying the genetic relatedness of Pseudomonas aeruginosa isolates from clinical and environmental sources. This bacterium is ubiquitous in the natural environment and is an important pathogen known to infect Cystic Fibrosis (CF) patients. The transmission route of strains has not yet been defined; current theories include acquisition from an environmental source or through patient-to-patient spread. A highly discriminatory, bioinformatics based, DNA typing method was developed to investigate the relatedness of clinical and environmental isolates. This study found a similarity between the environmental and several CF clonal strains and also highlighted occurrence of environmental P. aeruginosa strains in CF infections.
Resumo:
This study compared virulence and antibiotic resistance traits in clinical and environmental E. faecalis and E. faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E and esp were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linozolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk.
Resumo:
This article describes an evaluation of student experiences in environmental design courses with a community engagement focus. It aims to identify pedagogical approaches that minimize obstacles faced by students while maximizing learning opportunities. Focus groups composed of undergraduate students in seven classes generated three major findings: (1) learning how to effectively engage with community partners is one of the most beneficial challenges of this type of course; (2) logistical hurdles and course characteristics that limited students’ ability to connect with the community partners or synthesize the social, emotional, technical, and theoretical aspects of the course were perceived as learning obstacles; and (3) social and emotional connections with community partners are the most educationally significant part of the experience for students. The conclusion discusses recommendations for how environmental design instructors can take advantage of the unique social and emotional connections with community partners that facilitated community engagement can foster, while limiting the learning obstacles that students may experience. Areas for future research
Resumo:
A large subsurface, elevated temperature anomaly is well documented in Central Australia. High Heat Producing Granites (HHPGs) intersected by drilling at Innamincka are often assumed to be the dominant cause of the elevated subsurface temperatures, although their presence in other parts of the temperature anomaly has not been confirmed. Geological controls on the temperature anomaly remain poorly understood. Additionally, methods previously used to predict temperature at 5 km depth in this area are simplistic and possibly do not give an accurate representation of the true distribution and magnitude of the temperature anomaly. Here we re-evaluate the geological controls on geothermal potential in the Queensland part of the temperature anomaly using a stochastic thermal model. The results illustrate that the temperature distribution is most sensitive to the thermal conductivity structure of the top 5 km. Furthermore, the results indicate the presence of silicic crust enriched in heat producing elements between and 40 km.
Resumo:
Art activism uses visual and performance art to promote social and environmental agendas. In this paper, I explore attempts to raise awareness of sanitation issues at the global, local and personal level using scatological art. I focus on the successes of the open-air public art exhibition set up in the Brisbane (Queensland, Australia) central business district to celebrate World Toilet Day in 2008. The art in this exhibition featured included one hundred toilets decorated to raise awareness of global sanitation issues and the distribution of promotional materials featuring scatological images including postcards and stickers. Given the subject matter and intent, the toilet art and promotional materials presented at the One Hundred Toilet exhibition can be seen as an example of scatological art employed for the purposes of social and environmental activism. Through the One Hundred Toilet exhibition, I consider the political aims and activist potential of using scatological art to progress social and environmental agendas and consider how this kind of ‘shit on show’ approach can contribute to the construction of the shitting citizen; one who is simultaneously responsible for and responsive to managing the waste that they produce and recognising and responding to broader sanitation issues.
Resumo:
While the communicative turn in policy-making has encouraged the public deliberation of policy decisions it has arguably had a more limited impact on the ability of public processes to deal with wicked problems. Wicked policy problems are characterised by high levels of complexity, uncertainty and divergence of values. However, some wicked problems present the additional challenge of high levels of psychosocial sensitivity and verbal proscription. Because these unspeakable policy problems frequently involve a significant moral dimension, the regulation of intimate processes or bodies, and strong elements of abjection and symbolic pollution they are quite literally problems that we don’t like to think about or talk about. However, the potential environmental and social impacts of these problems require that they be addressed. In this paper I present the preliminary findings of a research project focussed on the idea of the unspeakable policy problem and how its unspeakable nature can impact upon public participation and policy and environmental outcomes.
Resumo:
Objectives To examine the effects on monotonous driving of normal sleep versus one night of sleep restriction in continuous positive airway pressure (CPAP) treated obstructive sleep apnoea (OSA) patients compared with age matched healthy controls. Methods Nineteen CPAP treated compliant male OSA patients (OSA-treated patients (OPs)), aged 50–75 years, and 20 healthy age-matched controls underwent both a normal night’s sleep and sleep restriction to 5 h (OPs remained on CPAP) in a counterbalanced design. All participants completed a 2 h afternoon monotonous drive in a realistic car simulator. Driving was monitored for sleepiness-related minor and major lane deviations, with ‘safe’ driving time being total time driven prior to first major lane deviation. EEGs were recorded continuously, and subjective sleepiness ratings were taken at regular intervals throughout the drive. Results After a normal night’s sleep, OPs and controls did not differ in terms of driving performance or in their ability to assess the levels of their own sleepiness, with both groups driving ‘safely’ for approximately 90 min. However, after sleep restriction, OPs had a significantly shorter (65 min) safe driving time and had to apply more compensatory effort to maintain their alertness compared with controls. They also underestimated the enhanced sleepiness. Nevertheless, apart from this caveat, there were generally close associations between subjective sleepiness, likelihood of a major lane deviation and EEG changes indicative of sleepiness. Conclusions With a normal night’s sleep, effectively treated older men with OSA drive as safely as healthy men of the same age. However, after restricted sleep, driving impairment is worse than that of controls. This suggests that, although successful CPAP treatment can alleviate potential detrimental effects of OSA on monotonous driving following normal sleep, these patients remain more vulnerable to sleep restriction.