972 resultados para engine particle number size distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Day/night variations in the size distribution of the particulate matter >0.15 mm (PM) were studied in May 1995 during the DYNAPROC time-series cruise in the northwestern Mediterranean Sea. Data on vertical distributions of PM (>0.15 mm) and zooplankton were collected with the Underwater Video Profiler (UVP). The comparisons of the UVP data with plankton net data and POC data from water bottles indicated that more than 97% of the particles detected by the UVP were non-living particles (0.15 mm) and that the PM contributed 4-34% of the total dry weight measured on GF/F filters. Comparison of seven pairs of day and night vertical profiles performed during the cruise showed that in the upper 800 m, the mean size and the volume of particles was higher at night than during the day. During the night, the integrated volume of the PM increased on average by 32±20%. This increase corresponded to a shift of smaller size classes (<0.5 mm) towards the larger ones (>0.5 mm). During the day, the pattern was reversed, and the quantity of PM >0.5 mm decreased. During the study period, the standing stock of PM (60-800 m) decreased from 7.5 to less than 2 g m?2 but the diel variations persisted, except for two short periods in the superficial layer following a wind event. The cyclic feeding activity induced by the diel vertical migration of zooplankton could be the best candidate to explain the observed diel fluctuations in the size classes of PM in the water column. However, our results also suggest that in the upper layer additional driving forces such as the increase of the level of turbulence after a wind event or the modification of the zoo- and phytoplankton community can influence the PM temporal evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between mesoscale hydrodynamics and the distribution of large particulate matter (LPM, particles larger than 200 ?m) in the first 1000 m of the Western Mediterranean basin was studied with a microprocessor-driven CTD-video package, the Underwater Video Profiler (UVP). Observations made during the last decade showed that, in late spring and summer, LPM concentration was high in the coastal part of the Western Mediterranean basin at the shelf break and near the continental slope (computed maximum: 149 ?g C/l between 0 and 100 m near the Spanish coast of the Gibraltar Strait). LPM concentration decreased further offshore into the central Mediterranean Sea where, below 100 m, it remained uniformly low, ranging from 2 to 4 ?g C/l. However, a strong variability was observed in the different mesoscale structures such as the Almeria-Oran jet in the Alboran Sea or the Algerian eddies. LPM concentration was up to one order of magnitude higher in fronts and eddies than in the adjacent oligotrophic Mediterranean waters (i.e. 35 vs. 8 ?g C/l in the Alboran Sea or 16 vs. 3 ?g C/l in a small shear cyclonic eddy). Our observations suggest that LPM spatial heterogeneity generated by the upper layer mesoscale hydrodynamics extends into deeper layers. Consequently, the superficial mesoscale dynamics may significantly contribute to the biogeochemical cycling between the upper and meso-pelagic layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particles sinking out of the euphotic zone are important vehicles of carbon export from the surface ocean. Most of the particles produce heavier aggregates by coagulating with each other before they sink. We implemented an aggregation model into the biogeochemical model of Regional Oceanic Modelling System (ROMS) to simulate the distribution of particles in the water column and their downward transport in the Northwest African upwelling region. Accompanying settling chamber, sediment trap and particle camera measurements provide data for model validation. In situ aggregate settling velocities measured by the settling chamber were around 55 m d**-1. Aggregate sizes recorded by the particle camera hardly exceeded 1 mm. The model is based on a continuous size spectrum of aggregates, characterised by the prognostic aggregate mass and aggregate number concentration. Phytoplankton and detritus make up the aggregation pool, which has an averaged, prognostic and size dependent sinking. Model experiments were performed with dense and porous approximations of aggregates with varying maximum aggregate size and stickiness as well as with the inclusion of a disaggregation term. Similar surface productivity in all experiments has been generated in order to find the best combination of parameters that produce measured deep water fluxes. Although the experiments failed to represent surface particle number spectra, in the deep water some of them gave very similar slope and spectrum range as the particle camera observations. Particle fluxes at the mesotrophic sediment trap site off Cape Blanc (CB) have been successfully reproduced by the porous experiment with disaggregation term when particle remineralisation rate was 0.2 d**-1. The aggregation-disaggregation model improves the prediction capability of the original biogeochemical model significantly by giving much better estimates of fluxes for both upper and lower trap. The results also point to the need for more studies to enhance our knowledge on particle decay and its variation and to the role that stickiness play in the distribution of vertical fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compared particle data from a moored video camera system with sediment trap derived fluxes at ~1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40-1200 mg m**-2 d**-1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm**3 l**-1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d**-1, indicating a close and fast coupling between dust input and sedimentation of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a 3 year record of deep water particle flux at the recently initiated ESTOC (European Station for Time-series in the Ocean, Canary Islands) located in the eastern subtropical North Atlantic gyre. Particle flux was highly seasonal, with flux maxima occurring in late winter-early spring. A comparison with historic CZCS (Coastal Zone Colour Scanner) data shows that these flux maxima occurred about 1 month after maximum chlorophyll was observed in surface waters in a presumed primary source region 100 km * 100 km northeast of the trap location. The main components of the particles collected with the traps were mineral particles and carbonate, both correlating strongly with organic matter sedimentation. Mineral particles in the sinking matter are indicative of the high aeolian input from the African desert regions. Comparing particle fluxes at 1 km and 3 km depth, we find that particle sedimentation increased substantially with depth. Yearly organic carbon sedimentation was 0.6 g m**-2 at 1 km depth compared with 0.8 g m**-2 at 3 km. We hypothesize that higher phytoplankton biomass observed further north could be a source of laterally advecting particles that interact with fast sinking particles originating from the primary source region. This hypothesis is also supported by the differences in size distribution of lithogenic matter found at the two trap depths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment samples were obtained for detailed Adenosine 5'-Triphosphate (ATP) analysis down to 57.8 m below the seafloor (mbsf). The samples were also analyzed for particle-size distribution, calcium carbonate (CaCO3), organic carbon, and total nitrogen. The concentrations of ATP ranged between 360 and 7050 pg/g (dry weight sediment), which agree well with a limited number of direct bacteria counts. Principal component analyses show that 63% of the total variance can be accounted for by the first two principal components. The concentration of ATP (bacterial numbers by inference) is virtually independent of the concentration of sedimentary organic carbon, but correlates with CaCO3 and coarse particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield - 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of great importance to recognize the particles size distribution and, particularly, the exposure to fine particles (≤ 2.5 μm). This particles dimension corresponds to the respirable fraction, the one that can implicate local and systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three units related with swine production and consumption, namely: feed production, swine production and swine slaughterhouse. A size-selective particle measuring in five to six workplaces of each unit was performed. Measurements of PM were done using a portable direct-reading hand-held equipment (Lighthouse, model 3016 IAQ). Data showed slaughterhouse unit with higher values, with values ranging from 0.030 to 0.142 mg/m3 (0.073 + 0.043), being the cutting room the workplace with higher values. In feed production unit, values were between 0.026 and 0.033 mg/m3 (0.028 + 0.003) with the warehouse of pharmacy products as the workplace with higher values. Finally, in swine unit values ranged from 0.006 to 0.048 mg/m3 (0.023 + 0.017) with the batteries area presenting the higher values. PM can be rich in fungi and bacteria and their metabolites, such as endotoxins and mycotoxins. Previous publications already showed high contamination in these occupational settings and particles can have an important role in exposure since can easily act as carrier of these agents. Data acquired allow not only a better prediction of particle penetration into respiratory regions of the respiratory tract, but also a better estimation of PM health effects. Moreover, data permit to identify the workplaces where investment should be made to prevent and reduce exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of extreme importance to know the particles size distribution and, in more detail, the exposure to fine particles (≤ 2.5 µm). This particles dimension corresponds to the respirable fraction. This particle fraction can result, besides local effects, in systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three different units located near Lisbon and related with occupational exposure to organic dust, namely: swine and poultry feed production and waste management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.