976 resultados para electronic effects
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods: an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels. Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical works on anisotropic rings.
Resumo:
The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PLZT ceramics belong to one of the very important groups of functional materials that make a basis for the production of a large range of electronic devices. The microstructure and properties of ceramics depend on the powder preparation and thermal processing conditions. Various techniques have been used to obtain chemically homogeneous and fine starting powders. PLZT powders have been prepared by two different production routes: by a modified Pechini method, using a polymeric precursor method (PMM) and by a partial oxalate method. A two-step sintering process, including a hot pressing, was carried out at 1100 and 1200degreesC Distinct phases obtained during the sintering process have been investigated by SEM and EDS techniques and dielectric properties such as permittivity and dielectric loss were measured in a frequency range from 1 to 20 kHz.. A significant difference in microstructure and dielectric properties, depending on powder origin and sintering procedure, has been noticed.
Resumo:
The present paper focuses on the structural, electronic, and compositional properties of Ge25Ga10S65 glasses before and after UV illumination in air using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) techniques. The XPS Ge 3d spectra reveal the existence of Ge-O bonds in the surface region of illuminated glass. In the case of this sample, XAS O K-edge spectra showed the formation of an enriched region of oxygen atoms in the glass bulk, indicating a different bonding structure of oxygen at the surface and in the bulk of the glass. Moreover, the structural changes that occur after UV illumination in the glass sample are identified as the formation of a homogeneous germanium oxide surface layer followed by an intermediary Ge25Ga10S65-yOz subsurface region. (c) 2005 Elsevier B.V. All rights reserved.
Fluorescent lamp model based on equivalent resistances, considering the effects of dimming operation
Resumo:
This paper presents a new methodology for the determination of fluorescent lamp models based on equivalent resistances. One important feature of the proposed methodology is concerned with the inclusion of the filaments into the model, considering the effects of dimming operation on the equivalent resistances. The classical Series-Resonant Parallel-Loaded Half-Bridge inverter is used as the power stage of the ballast. Moreover, the variation of the inverter's switching frequency is the dimming technique assumed for the analyses. Results obtained with a F32T8 lamp indicate that the accuracy of the model is very satisfactory. Thus, the lamp models obtained with the proposed methodology have the potential to serve as an important tool for ballast designers, considering the necessity for evaluating the lamp/ballast compatibility, according to issues concerned to the operating conditions of the electrodes' filaments.
Resumo:
The effect of Sb doping in SnO2 thin films prepared by the sol-gel dip-coating (SGDC) process is investigated. Electronic and structural properties are evaluated through synchrotron radiation measurements by EXAFS and XANES. These data indicate that antimony is in the oxidation state W, and replaces tin atoms (Sn4+), at a grain surface site. Although the substitution yields net free carrier concentration, the electrical conductivity is increased only slightly, because it is reduced by the high grain boundary scattering. The overall picture leads to a shortening of the grain boundary potential, where oxygen vacancies compensate for oxygen adsorbed species, decreasing the trapped charge at grain boundary. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The structural and electronic properties of SrZrO3 selected surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The relaxation effects for two symmetric and asymmetric terminations are analyzed. The electronic and energy band properties are discussed on the basis of band structure as well density of states. There is a more significant rumpling in the SrO as compared to the ZrO2 terminated surfaces. The calculated indirect gap is 4.856, 4.562, 4.637 eV for bulk, ZrO2 and asymmetric terminations, respectively. The gap becomes direct; 4.536 eV; for SrO termination. The contour in the (110) diagonal plane indicates a partial covalent character between Zr and 0 atoms for the SrO terminated surface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Structural and electronic properties of the bulk and relaxed surfaces (TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of periodic quantum-mechanical calculations based on density functional theory. It is observed that the difference in surface energies is small and relaxations effects are most prominent for Ti and Ph surface atoms. The electronic structure shows a splitting of the lowest conduction bands for the TiO2 terminated surface and of the highest valence bands for the PbO terminated slab. The calculated indirect band gap is: 3.18, 2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The electron density maps show that the Ti-O bond has a partial covalent character, whereas the Pb-O bonds present a very low covalency. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structural and electronic properties of ZnO (10 (1) over bar0) and (11 (2) over bar0) surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The stability and relaxation effects for both surfaces were analyzed. The electronic and energy band properties were discussed on the basis of band structure as well as density of states. There is a significant relaxation in the (10 (1) over bar0) as compared to the (11 (2) over bar0) terminated surfaces. The calculated direct gap is 3.09, 2.85, and 3.09 eV for bulk, (10 (1) over bar0), and (11 (2) over bar0) surfaces, respectively. The band structures for both surfaces are very similar.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)