959 resultados para electron affinities of enolates
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The goal of this paper is to analyze the influence of the intense geomagnetic storms in the ionosphere and GNSS (GPS) positioning. It was analyzed the effects of intense geomagnetic storm of November 20th 2003 using GPS data from RBMC (Brazilian Network for Continuous Monitoring) located in different sites in the Brazilian region and ionosphere global maps. While analyzing the results, it can be observed an increase in the electron density of the ionosphere in the regions near to the geomagnetic equator in the afternoon on the day of the storm. In the period after the sunset of the storm day, there is an increase in the density of free electrons and ionospheric irregularities in regions furthest from the geomagnetic equator, when compared to geomagnetically quiet days. When the positioning point is analyzed, it is observed high discrepancies values in planimetry and altimetry at the same position for periods of changes that occurred in the ionosphere, especially for the GPS stations located furthest from the geomagnetic equator in the period after the sunset Sun.
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Sociais - FCLAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.
Resumo:
A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched to supply a bilobed allantoic sac. Small blood vessels and smooth muscle bundles were found within the stroma of the cord. Foci of squamous metaplasia occurred in the allanto-amnion and allantochorion. The interhemal membrane of the placenta was of the epitheliochorial type. Two different types of trophoblastic epithelium were seen. Most was of the simple columnar type and indented by fetal capillaries. However, there were also areolar regions with tall columnar trophoblast and these were more sparsely supplied with capillaries. The endometrium was well vascularised and richly supplied with actively secreting glands. These findings are consistent with the current view that Cetacea are nested within Artiodactyla as sister group to the hippopotamids.
Resumo:
There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.